Magnetisation oscillations by vortex-antivortex dipoles

被引:1
|
作者
Komineas, Stavros [1 ]
机构
[1] Univ Crete, Dept Appl Math, Iraklion 71409, Greece
关键词
Landau-Lifshitz equation; Magnetic vortex; Vortex-antivortex pairs; Spin-transfer oscillators; Merons; TOPOLOGICAL SOLITONS; DYNAMICS; FERROMAGNETS;
D O I
10.1016/j.physd.2014.10.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A vortex-antivortex dipole can be generated due to current with in-plane spin-polarisation, flowing into a magnetic element, which then behaves as a spin transfer oscillator. Its dynamics is analysed using the Landau-Lifshitz equation including a Slonczewski spin-torque term. We establish that the vortex dipole is set in steady state rotational motion due to the interaction between the vortices, while an external in-plane magnetic field can tune the frequency of rotation. The rotational motion is linked to the nonzero skyrmion number of the dipole. The spin-torque acts to stabilise the vortex dipole at a definite vortex-antivortex separation distance. In contrast to a free vortex dipole, the rotating pair under spin-polarised current is an attractor of the motion, therefore a stable state. The details of the rotating magnetisation configurations are analysed theoretically and numerically. The asymptotic behaviour of the rotating configurations provide results on their expected stability. Extensive numerical simulations reveal three types of vortex-antivortex pairs which are obtained as we vary the external field and spintorque strength. We give a guide for the frequency of rotation based on analytical relations. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:8 / 16
页数:9
相关论文
共 50 条
  • [1] Vortex-antivortex dynamics in superconductor-antiparallel magnetic dipoles bilayers
    Lima, Clessio L. S.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2014, 503 : 166 - 169
  • [2] Vortex-antivortex nucleation in superconducting films with arrays of in-plane dipoles
    Milosevic, MV
    Peeters, FM
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2006, 437-38 (208-212): : 208 - 212
  • [3] Vortex-antivortex labyrinth wavefunction
    Okulov, A. Yu
    Optics InfoBase Conference Papers, 2008,
  • [4] Vortex-antivortex labyrinth wavefunction
    Okulov, A. Yu.
    2008 CONFERENCE ON LASERS AND ELECTRO-OPTICS & QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE, VOLS 1-9, 2008, : 3319 - 3320
  • [5] Formation and Annihilation of Vortex-Antivortex Pairs by Magnetic Dipoles in a Mesoscopic Superconducting Film
    Peng, L.
    Wang, Y.
    Xu, J.
    Zhang, Y.
    Zhou, L.
    Zhu, Y.
    Cai, C.
    ACTA PHYSICA POLONICA A, 2019, 136 (06) : 962 - 967
  • [6] Vortex-antivortex patterns in mesoscopic superconductors
    Teniers, G
    Moshchalkov, VV
    Chibotaru, LF
    Ceulemans, A
    PHYSICA B-CONDENSED MATTER, 2003, 329 : 1340 - 1343
  • [7] Creation and pinning of vortex-antivortex pairs
    Kim, Sangbum
    Hu, Chia-Ren
    Andrews, Malcolm J.
    PHYSICAL REVIEW B, 2006, 74 (21):
  • [8] VORTEX-ANTIVORTEX INTERACTION IN LAYERED SUPERCONDUCTORS
    TIMM, C
    APPEL, J
    PHYSICA B, 1994, 194 (pt 2): : 2407 - 2408
  • [9] Vortex-antivortex macroscopic quantum state
    Okulov, Alexey
    FRONTIERS OF FUNDAMENTAL AND COMPUTATIONAL PHYSICS, 2008, 1018 : 50 - 51
  • [10] Vortex-antivortex lattices in a holographic superconductor
    Su, Jia-Hao
    Xia, Chuan-Yin
    Yang, Wei -Can
    Zeng, Hua-Bi
    PHYSICAL REVIEW D, 2024, 109 (04)