Forecasting with real-time macroeconomic data: The ragged-edge problem and revisions

被引:4
|
作者
Bouwman, Kees E. [1 ]
Jacobs, Jan P. A. M. [2 ,3 ,4 ]
机构
[1] Erasmus Univ, Inst Econometr, NL-3000 DR Rotterdam, Netherlands
[2] Univ Groningen, CCSO, NL-9700 AV Groningen, Netherlands
[3] Univ Groningen, Fac Econ & Business, NL-9700 AV Groningen, Netherlands
[4] Australian Natl Univ, CAMA, Canberra, ACT, Australia
关键词
Data revisions; Publication lags; Data imputations; Leading index; State space models; Kalman filter; FACTOR MODEL; GDP; TESTS;
D O I
10.1016/j.jmacro.2011.04.002
中图分类号
F [经济];
学科分类号
02 ;
摘要
Real-time macroeconomic data are typically incomplete for today and the immediate past ('ragged edge') and subject to revision. To enable more timely forecasts the recent missing data have to be imputed. The paper presents a state-space model that can deal with publication lags and data revisions. The framework is applied to the US leading index. We conclude that including even a simple model of data revisions improves the accuracy of the imputations and that the univariate imputation method in levels adopted by The Conference Board can be improved upon. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:784 / 792
页数:9
相关论文
共 50 条
  • [41] A Novel Data-Driven Model for Real-Time Influenza Forecasting
    Venna, Siva R.
    Tavanaei, Amirhossein
    Gottumukkala, Raju N.
    Raghavan, Vijay V.
    Maida, Anthony S.
    Nichols, Stephen
    [J]. IEEE ACCESS, 2019, 7 : 7691 - 7701
  • [42] Local real-time forecasting of ozone exposure using temperature data
    Lu, Xinyi
    Gelfand, Alan E.
    Holland, David M.
    [J]. ENVIRONMETRICS, 2018, 29 (07)
  • [43] Business cycle dating and forecasting with real-time Swiss GDP data
    Glocker, Christian
    Wegmueller, Philipp
    [J]. EMPIRICAL ECONOMICS, 2020, 58 (01) : 73 - 105
  • [44] Business cycle dating and forecasting with real-time Swiss GDP data
    Christian Glocker
    Philipp Wegmueller
    [J]. Empirical Economics, 2020, 58 : 73 - 105
  • [45] Real-time forecasting of emergency department arrivals using prehospital data
    Andreas Asheim
    Lars P. Bache-Wiig Bjørnsen
    Lars E. Næss-Pleym
    Oddvar Uleberg
    Jostein Dale
    Sara M. Nilsen
    [J]. BMC Emergency Medicine, 19
  • [46] Real-Time Fiscal Forecasting Using Mixed-Frequency Data*
    Asimakopoulos, Stylianos
    Paredes, Joan
    Warmedinger, Thomas
    [J]. SCANDINAVIAN JOURNAL OF ECONOMICS, 2020, 122 (01): : 369 - 390
  • [47] A model selection approach to real-time macroeconomic forecasting using linear models and artificial neural networks
    Swanson, NR
    White, H
    [J]. REVIEW OF ECONOMICS AND STATISTICS, 1997, 79 (04) : 540 - 550
  • [48] OPERATIONAL FORECASTING WITH REAL-TIME DATABASES
    BAE, DH
    GEORGAKAKOS, KP
    NANDA, SK
    [J]. JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 1995, 121 (01): : 49 - 60
  • [49] Real-Time river flow forecasting
    Shamseldin, AY
    [J]. RIVER BASIN MODELLING FOR FLOOD RISK MITIGATION, 2006, : 181 - 195
  • [50] Advances in real-time flood forecasting
    Young, PC
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 360 (1796): : 1433 - 1450