Forecasting with real-time macroeconomic data: The ragged-edge problem and revisions

被引:4
|
作者
Bouwman, Kees E. [1 ]
Jacobs, Jan P. A. M. [2 ,3 ,4 ]
机构
[1] Erasmus Univ, Inst Econometr, NL-3000 DR Rotterdam, Netherlands
[2] Univ Groningen, CCSO, NL-9700 AV Groningen, Netherlands
[3] Univ Groningen, Fac Econ & Business, NL-9700 AV Groningen, Netherlands
[4] Australian Natl Univ, CAMA, Canberra, ACT, Australia
关键词
Data revisions; Publication lags; Data imputations; Leading index; State space models; Kalman filter; FACTOR MODEL; GDP; TESTS;
D O I
10.1016/j.jmacro.2011.04.002
中图分类号
F [经济];
学科分类号
02 ;
摘要
Real-time macroeconomic data are typically incomplete for today and the immediate past ('ragged edge') and subject to revision. To enable more timely forecasts the recent missing data have to be imputed. The paper presents a state-space model that can deal with publication lags and data revisions. The framework is applied to the US leading index. We conclude that including even a simple model of data revisions improves the accuracy of the imputations and that the univariate imputation method in levels adopted by The Conference Board can be improved upon. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:784 / 792
页数:9
相关论文
共 50 条
  • [31] Solving the Authentication Problem for Real-time Data Streams
    Wang Fangnian
    Wang Shenshen
    Che WanFang
    Bai Yun
    Niu Cong
    [J]. APPLIED SCIENCE, MATERIALS SCIENCE AND INFORMATION TECHNOLOGIES IN INDUSTRY, 2014, 513-517 : 1356 - 1360
  • [32] A Serverless Real-Time Data Analytics Platform for Edge Computing
    Nastic, Stefan
    Rausch, Thomas
    Scekic, Ognjen
    Dustdar, Schahram
    Gusev, Marjan
    Koteska, Bojana
    Kostoska, Magdalena
    Jakimovski, Boro
    Ristov, Sasko
    Prodan, Radu
    [J]. IEEE INTERNET COMPUTING, 2017, 21 (04) : 64 - 71
  • [33] Dealing with Benchmark Revisions in Real-Time Data: The Case of German Production and Orders Statistics
    Knetsch, Thomas A.
    Reimers, Hans-Eggert
    [J]. OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 2009, 71 (02) : 209 - 235
  • [34] Real-Time Macroeconomic Monitoring: Real Activity, Inflation, and Interactions
    Aruoba, S. Boragan
    Diebold, Francis X.
    [J]. AMERICAN ECONOMIC REVIEW, 2010, 100 (02): : 20 - 24
  • [35] Forecasting stock market volatility with macroeconomic variables in real time
    Pierdzioch, Christian
    Doepke, Joerg
    Hartmann, Daniel
    [J]. JOURNAL OF ECONOMICS AND BUSINESS, 2008, 60 (03) : 256 - 276
  • [36] Edge Assisted Efficient Data Annotation for Real-time Video Big Data
    Tang, Libin
    Chen, Weian
    Moustafa, Hassnaa
    Deshpande, Gauri
    Subramony, Harish
    Ha, Jimin
    Sirlapu, Tejaswini
    Kwasniewska, Alicja
    [J]. IECON 2018 - 44TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2018, : 6197 - 6201
  • [37] Real-time edge follow: A real-time path search approach
    Undeger, Cagatay
    Polat, Faruk
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2007, 37 (05): : 860 - 872
  • [38] Radar data assimilation for real-time short term forecasting of snowbands
    Xu, M
    Crook, NA
    Liu, YB
    Rasmussen, R
    [J]. 31ST CONFERENCE ON RADAR METEOROLOGY, VOLS 1 AND 2, 2003, : 1024 - 1027
  • [39] Edge Scheduling Framework for Real-Time and Non Real-Time Tasks
    Fadahunsi, Olamilekan
    Ma, Yuxiang
    Maheswaran, Muthucumaru
    [J]. 36TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2021, 2021, : 719 - 728
  • [40] Real-time forecasting of emergency department arrivals using prehospital data
    Asheim, Andreas
    Bjornsen, Lars P. Bache-Wiig
    Naess-Pleym, Lars E.
    Uleberg, Oddvar
    Dale, Jostein
    Nilsen, Sara M.
    [J]. BMC EMERGENCY MEDICINE, 2019, 19 (01):