SELF-SIMILAR SOLUTIONS FOR A SUPERDIFFUSIVE HEAT EQUATION WITH GRADIENT NONLINEARITY

被引:0
|
作者
de Almeida, Marcelo Fernandes [1 ]
Viana, Arlucio [2 ]
机构
[1] Univ Fed Sergipe, DMA Dept Matemat, Ave Rosa Else, Sao Cristovao, Sergipe, Brazil
[2] Univ Fed Sergipe, DMAI Dept Matemat, Ave Vereador Olimpio Grande, Itabaiana, Sergipe, Brazil
关键词
Fractional partial differential equations; self-similarity; radial symmetry; Sobolev-Morrey spaces; SIMILAR GLOBAL-SOLUTIONS; PARABOLIC EQUATION; MORREY SPACES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article studies the existence, stability, self-similarity and symmetries of solutions for a superdiffusive heat equation with superlinear and gradient nonlinear terms with initial data in new homogeneous Besov-Morrey type spaces. Unlike in previous works on such time-fractional partial differential equations of order alpha is an element of (1, 2), we take non null initial velocities into consideration, where new difficulties arise from. We overcome them by developing an appropriate decomposition of the two-parametric Mittag-Leffier function to obtain Mikhlin-type estimates and obtain our existence theorem.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] SELF-SIMILAR GROOVING SOLUTIONS TO THE MULLINS’ EQUATION
    Kalantarova H.V.
    Novick-Cohen A.
    Kalantarova, Habiba V. (kalantarova@campus.technion.ac.il), 1600, American Mathematical Society (79): : 1 - 26
  • [22] ON SELF-SIMILAR SOLUTIONS TO THE HOMOGENEOUS BOLTZMANN EQUATION
    Cannone, Marco
    Karch, Grzegorz
    KINETIC AND RELATED MODELS, 2013, 6 (04) : 801 - 808
  • [23] Self-similar solutions satisfying or not the equation of the interface
    de Pablo, A
    Sánchez, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 276 (02) : 791 - 814
  • [24] Self-similar solutions for the foam drainage equation
    Zitha, PLJ
    Vermolen, FJ
    TRANSPORT IN POROUS MEDIA, 2006, 63 (01) : 195 - 200
  • [25] Self-Similar Solutions for the Foam Drainage Equation
    Pacelli L. J. Zitha
    Fred J. Vermolen
    Transport in Porous Media, 2006, 63 : 195 - 200
  • [26] Convergence to self-similar solutions for a coagulation equation
    Laurençot, P
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2005, 56 (03): : 398 - 411
  • [27] THE SELF-SIMILAR SOLUTIONS TO A FAST DIFFUSION EQUATION
    QI, YW
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1994, 45 (06): : 914 - 932
  • [28] Self-similar solutions for the Schrodinger map equation
    Germain, Pierre
    Shatah, Jalal
    Zeng, Chongchun
    MATHEMATISCHE ZEITSCHRIFT, 2010, 264 (03) : 697 - 707
  • [29] Self-Similar Solutions of the Boltzmann Equation and Their Applications
    A. V. Bobylev
    C. Cercignani
    Journal of Statistical Physics, 2002, 106 : 1039 - 1071
  • [30] VARIATIONAL-PROBLEMS RELATED TO SELF-SIMILAR SOLUTIONS OF THE HEAT-EQUATION
    ESCOBEDO, M
    KAVIAN, O
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1987, 11 (10) : 1103 - 1133