THE SELF-SIMILAR SOLUTIONS TO A FAST DIFFUSION EQUATION

被引:1
|
作者
QI, YW [1 ]
机构
[1] UNIV MINNESOTA,SCH MATH,MINNEAPOLIS,MN 55455
来源
关键词
D O I
10.1007/BF00952085
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A quasilinear equation DELTAu(alpha) - x . DELTAu/2 + f(u) = 0 is studied, where f(u) = - muu + u(beta), mu > 0, 0 < alpha < 1, beta > 1 and x element-of R(n). The equation arises from the study of blow-up self-similar solutions of the heat equation psi(t) = DELTApsi(alpha) + psi(beta). We prove the existence and non-existence of ground state for various combination of mu, alpha and beta. In particular, we prove that when beta/alpha < infinity for n = 1,2 or beta/alpha < (n + 2)/(n - 2) for n greater-than-or-equal-to 3 there exists no non-constant positive radial self-similar solution of the parabolic equation, but for many cases where beta/alpha > (n + 2)/(n - 2) there exists an infinite number of non-constant positive radial self-similar solutions.
引用
收藏
页码:914 / 932
页数:19
相关论文
共 50 条
  • [1] SELF-SIMILAR BEHAVIOR FOR THE EQUATION OF FAST NONLINEAR DIFFUSION
    KING, JR
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1993, 343 (1668): : 337 - 375
  • [2] Self-similar solutions for a nonlinear radiation diffusion equation
    Garnier, Josselin
    Malinie, Guy
    Saillard, Yves
    Cherfils-Clerouin, Catherine
    [J]. PHYSICS OF PLASMAS, 2006, 13 (09)
  • [3] Self-similar solutions of the p-laplace heat equation:: The fast diffusion case
    Bidaut-Veron, Marie Francoise
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2006, 227 (02) : 201 - 269
  • [4] GENERAL SELF-SIMILAR SOLUTIONS OF DIFFUSION EQUATION AND RELATED CONSTRUCTIONS
    Matyas, Laszlo
    Barna, Imre Ferenc
    [J]. ROMANIAN JOURNAL OF PHYSICS, 2022, 67 (1-2):
  • [5] SELF-SIMILAR SOLUTIONS FOR A CONVECTION DIFFUSION EQUATION WITH ABSORPTION IN RN
    ESCOBEDO, M
    ZUAZUA, E
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1991, 74 (01) : 47 - 64
  • [6] A class of self-similar solutions to a singular and degenerate diffusion equation
    Wang, CP
    Tong, Y
    Yin, JX
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (04) : 775 - 796
  • [7] Numerical investigations on self-similar solutions of the nonlinear diffusion equation
    Li, Yibao
    Kim, Junseok
    [J]. EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2013, 42 : 30 - 36
  • [8] Anomalous self-similar solutions of exponential type for the subcritical fast diffusion equation with weighted reaction
    Iagar, Razvan Gabriel
    Sanchez, Ariel
    [J]. NONLINEARITY, 2022, 35 (07) : 3385 - 3416
  • [9] Self-similar solutions for the Muskat equation
    Garcia-Juarez, Eduardo
    Gomez-Serrano, Javier
    Nguyen, Huy Q.
    Pausader, Benoit
    [J]. ADVANCES IN MATHEMATICS, 2022, 399
  • [10] SELF-SIMILAR SOLUTIONS FOR DIFFUSION IN SEMICONDUCTORS
    PELETIER, LA
    TROY, WC
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1994, 124 : 473 - 506