Al2O3/poly(ethylene terephthalate) composite separator for high-safety lithium-ion batteries

被引:50
|
作者
Li, Weibiao [1 ,2 ]
Li, Xiaozhe [2 ]
Yuan, Anbao [1 ]
Xie, Xiaohua [2 ]
Xia, Baojia [2 ]
机构
[1] Shanghai Univ, Dept Chem, Coll Sci, Shanghai 200444, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai 201800, Peoples R China
基金
中国国家自然科学基金;
关键词
Separator; Lithium-ion battery; Cubic Al2O3 nanoparticles; Thermostability; Electrochemical performance; POLYETHYLENE SEPARATOR; THERMAL-STABILITY; COATING LAYER; PERFORMANCE; CHALLENGES;
D O I
10.1007/s11581-016-1752-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Separators have garnered substantial attention from researchers and developers in regard to their crucial role in the safety of lithium-ion batteries. In this study, a composite separator was prepared by coating cubic Al2O3 nanoparticles on non-woven poly(ethylene terephthalate) (PET) via a simple dip-coating process. The basic properties of the Al2O3-coated PET non-woven composite separator were characterized by scanning electron microscopy and other specific measurements in respect to its morphology, porosity, electrolyte wettability, and thermal shrinkage as well as its application in lithium-ion batteries. We found that the composite separator has outstanding thermostability, which may improve battery safety. Additionally, by comparison against the commercial Celgard 2500 separator, the proposed composite separator exhibits higher porosity, superior electrolyte wettability, and higher ionic conductivity. More importantly, the lithium-ion battery assembled with this composite separator shows better electrochemical performance (e.g., cycling and discharge C-rate capability) compared to that with the Celgard 2500 separator. The results of this study represent a simple approach to preparing high-performance separators that can be used to enhance the safety of lithium-ion batteries.
引用
收藏
页码:2143 / 2149
页数:7
相关论文
共 50 条
  • [21] A biodegradable nano-composite membrane for high-safety and durable lithium-ion batteries
    Wang, Ting
    Liu, Na
    Zhou, Hui
    Chen, Ming-Jun
    MICRO & NANO LETTERS, 2023, 18 (05)
  • [22] High-Safety Anode Materials for Advanced Lithium-Ion Batteries
    Kai Yuan
    Yu Lin
    Xiang Li
    Yufeng Ding
    Peng Yu
    Jian Peng
    Jiazhao Wang
    Hua Kun Liu
    Shixue Dou
    Energy & Environmental Materials, 2024, 7 (05) : 5 - 23
  • [23] Preparation of a high-purity ultrafine α-Al2O3 powder and characterization of an Al2O3-coatedPE separator for lithium-ion batteries
    Lee, Dong-Won
    Lee, Sang-Hun
    Kim, Yong-Nam
    Oh, Jong-Min
    POWDER TECHNOLOGY, 2017, 320 : 125 - 132
  • [24] High-Safety Anode Materials for Advanced Lithium-Ion Batteries
    Yuan, Kai
    Lin, Yu
    Li, Xiang
    Ding, Yufeng
    Yu, Peng
    Peng, Jian
    Wang, Jiazhao
    Liu, Huakun
    Dou, Shixue
    ENERGY & ENVIRONMENTAL MATERIALS, 2024, 7 (05)
  • [25] Nonflammable organic electrolytes for high-safety lithium-ion batteries
    Deng, Kuirong
    Zeng, Qingguang
    Wang, Da
    Liu, Zheng
    Wang, Guangxia
    Qiu, Zhenping
    Zhang, Yangfan
    Xiao, Min
    Meng, Yuezhong
    ENERGY STORAGE MATERIALS, 2020, 32 (32) : 425 - 447
  • [26] Amino-Functionalized Al2O3 Particles Coating Separator with Excellent Lithium-Ion Transport Properties for High-Power Density Lithium-Ion Batteries
    Zhang, Hui
    Sheng, Lei
    Bai, Yaozong
    Song, Shangjun
    Liu, Gaojun
    Xue, Hairong
    Wang, Tao
    Huang, Xianli
    He, Jianping
    ADVANCED ENGINEERING MATERIALS, 2020, 22 (11)
  • [27] Polyphenylene Sulfide Separator for High Safety Lithium-Ion Batteries
    Liu, Junchen
    Qin, Jiaxiang
    Mo, Yudi
    Wang, Shuanjin
    Han, Dongmei
    Xiao, Min
    Meng, Yuezhong
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (08) : A1644 - A1652
  • [28] Electrolytes for High-Safety Lithium-Ion Batteries at Low Temperature: A Review
    Yun, Shuhong
    Liang, Xinghua
    Xi, Junjie
    Liao, Leyu
    Cui, Shuwan
    Chen, Lihong
    Li, Siying
    Hu, Qicheng
    POLYMERS, 2024, 16 (18)
  • [29] Regulating chiral nematic liquid crystal of hydroxypropyl methylcellulose coating on separator for High-Safety Lithium-Ion batteries
    Wang, Xichang
    Huang, Yun
    Ren, Wenhao
    Luo, Chen
    Xu, Xi
    Wang, Yiheng
    Wang, Yanzhou
    Zhang, Changjian
    Zhao, Zhongwei
    Liu, Li
    Li, Xing
    Wang, Mingshan
    Cao, Haijun
    CHEMICAL ENGINEERING JOURNAL, 2024, 502
  • [30] Regulating chiral nematic liquid crystal of hydroxypropyl methylcellulose coating on separator for High-Safety Lithium-Ion batteries
    Wang, Xichang
    Huang, Yun
    Ren, Wenhao
    Luo, Chen
    Xu, Xi
    Wang, Yiheng
    Wang, Yanzhou
    Zhang, Changjian
    Zhao, Zhongwei
    Liu, Li
    Li, Xing
    Wang, Mingshan
    Cao, Haijun
    Chemical Engineering Journal, 1600, 502