Electrolytes for High-Safety Lithium-Ion Batteries at Low Temperature: A Review

被引:0
|
作者
Yun, Shuhong [1 ,2 ]
Liang, Xinghua [1 ,2 ]
Xi, Junjie [2 ]
Liao, Leyu [1 ,2 ]
Cui, Shuwan [1 ,2 ]
Chen, Lihong [3 ]
Li, Siying [1 ,2 ]
Hu, Qicheng [1 ,2 ]
机构
[1] Guangxi Univ Sci & Technol, Key Lab Automobile Components & Vehicle Technol, Liuzhou 545006, Peoples R China
[2] Guangxi Univ Sci & Technol, Ind Coll Intelligent Vehicle Mfg & New Energy Auto, Liuzhou 545006, Peoples R China
[3] Zhejiang Kaili New Mat Co Ltd, Shaoxing 312000, Peoples R China
关键词
lithium-ion batteries; low temperatures; safety issues; solid-state electrolytes; DEEP EUTECTIC SOLVENTS; METAL BATTERIES; THERMAL RUNAWAY; INORGANIC ELECTROLYTE; POLYMER ELECTROLYTES; LIQUID ELECTROLYTE; HIGH-POWER; GRAPHITE; CELLS; SALT;
D O I
10.3390/polym16182661
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
As the core of modern energy technology, lithium-ion batteries (LIBs) have been widely integrated into many key areas, especially in the automotive industry, particularly represented by electric vehicles (EVs). The spread of LIBs has contributed to the sustainable development of societies, especially in the promotion of green transportation. However, the high demand for battery performance and safety in these fields has made the high viscosity, volatility, and potential leakage inherent in traditional organic liquid electrolytes a constraint on their further expansion. Especially at low temperature, the increased viscosity of the electrolyte, reduced solubility of lithium salts, crystallization or solidification of the electrolyte, increased resistance to charge transfer due to interfacial by-products, and short-circuiting due to the growth of anode lithium dendrites all affect the performance and safety of LIBs. Therefore, improving the safety performance of LIBs under low-temperature environments has become a focus of current research. This paper primarily reviews the progress made in utilizing different types of electrolytes in LIBs to enhance safety and optimize low temperature performance and discusses the current research progress as well as the future development direction of the field.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] Nonflammable organic electrolytes for high-safety lithium-ion batteries
    Deng, Kuirong
    Zeng, Qingguang
    Wang, Da
    Liu, Zheng
    Wang, Guangxia
    Qiu, Zhenping
    Zhang, Yangfan
    Xiao, Min
    Meng, Yuezhong
    ENERGY STORAGE MATERIALS, 2020, 32 (32) : 425 - 447
  • [2] Review on Low-Temperature Electrolytes for Lithium-Ion and Lithium Metal Batteries
    Tan, Sha
    Shadike, Zulipiya
    Cai, Xinyin
    Lin, Ruoqian
    Kludze, Atsu
    Borodin, Oleg
    Lucht, Brett L.
    Wang, Chunsheng
    Hu, Enyuan
    Xu, Kang
    Yang, Xiao-Qing
    ELECTROCHEMICAL ENERGY REVIEWS, 2023, 6 (01)
  • [3] Review on Low-Temperature Electrolytes for Lithium-Ion and Lithium Metal Batteries
    Sha Tan
    Zulipiya Shadike
    Xinyin Cai
    Ruoqian Lin
    Atsu Kludze
    Oleg Borodin
    Brett L. Lucht
    Chunsheng Wang
    Enyuan Hu
    Kang Xu
    Xiao-Qing Yang
    Electrochemical Energy Reviews, 2023, 6
  • [4] A multifunctional composite membrane for high-safety lithium-ion batteries
    Gao, Zhihao
    Luo, Lin
    Wen, Rongyan
    Song, Xin
    Gao, Zhenyue
    Zheng, Zongmin
    Zhang, Jianmin
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (04) : 1774 - 1784
  • [5] High-Safety Anode Materials for Advanced Lithium-Ion Batteries
    Kai Yuan
    Yu Lin
    Xiang Li
    Yufeng Ding
    Peng Yu
    Jian Peng
    Jiazhao Wang
    Hua Kun Liu
    Shixue Dou
    Energy & Environmental Materials, 2024, 7 (05) : 5 - 23
  • [6] High-Safety Anode Materials for Advanced Lithium-Ion Batteries
    Yuan, Kai
    Lin, Yu
    Li, Xiang
    Ding, Yufeng
    Yu, Peng
    Peng, Jian
    Wang, Jiazhao
    Liu, Huakun
    Dou, Shixue
    ENERGY & ENVIRONMENTAL MATERIALS, 2024, 7 (05)
  • [7] Correction to: Review on Low-Temperature Electrolytes for Lithium-Ion and Lithium Metal Batteries
    Sha Tan
    Zulipiya Shadike
    Xinyin Cai
    Ruoqian Lin
    Atsu Kludze
    Oleg Borodin
    Brett L. Lucht
    Chunsheng Wang
    Enyuan Hu
    Kang Xu
    Xiao-Qing Yang
    Electrochemical Energy Reviews, 2024, 7
  • [8] High-safety separators for lithium-ion batteries and sodium-ion batteries: advances and perspective
    Zhang, Lupeng
    Li, Xinle
    Yang, Mingrui
    Chen, Weihua
    ENERGY STORAGE MATERIALS, 2021, 41 (41) : 522 - 545
  • [9] Sulfonylimide based single lithium-ion conducting polymer electrolytes boosting high-safety and high-energy-density lithium batteries
    Chen, Chaojie
    Li, Zulei
    Zhou, Qian
    Han, Pengxian
    Cui, Guanglei
    ETRANSPORTATION, 2024, 20
  • [10] Liquid non-aqueous electrolytes for high-voltage and high-safety lithium-ion cells: A review
    Ouyang, Dongxu
    Wang, Kuo
    Guan, Jun
    Wang, Zhirong
    JOURNAL OF POWER SOURCES, 2024, 607