A scalable architecture for quantum computation with molecular nanomagnets

被引:82
|
作者
Jenkins, M. D. [1 ,2 ,3 ,7 ]
Zueco, D. [1 ,2 ,3 ,4 ]
Roubeau, O. [1 ,2 ,3 ]
Aromi, G. [5 ]
Majer, J. [6 ]
Luis, F. [1 ,2 ,3 ]
机构
[1] CSIC, ICMA, Zaragoza, Spain
[2] Univ Zaragoza, Zaragoza, Spain
[3] Univ Zaragoza, Dept Fis Mat Condensada, Zaragoza, Spain
[4] Fdn ARAID, Zaragoza 50004, Spain
[5] Univ Barcelona, Dept Quim Inorgan, Barcelona, Spain
[6] TU Wien, Atominst, Vienna Ctr Quantum Sci & Technol, A-1020 Vienna, Austria
[7] Delft Univ Technol, Kavli Inst Nanosci, Delft, Netherlands
基金
欧洲研究理事会;
关键词
METAL-ORGANIC FRAMEWORK; SPIN QUBITS; SURFACES; MAGNETS; COHERENCE; DESIGN; COMPLEXES; ELECTRODYNAMICS; RELAXATION; CHEMISTRY;
D O I
10.1039/c6dt02664h
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
A proposal for a magnetic quantum processor that consists of individual molecular spins coupled to superconducting coplanar resonators and transmission lines is carefully examined. We derive a simple magnetic quantum electrodynamics Hamiltonian to describe the underlying physics. It is shown that these hybrid devices can perform arbitrary operations on each spin qubit and induce tunable interactions between any pair of them. The combination of these two operations ensures that the processor can perform universal quantum computations. The feasibility of this proposal is critically discussed using the results of realistic calculations, based on parameters of existing devices and molecular qubits. These results show that the proposal is feasible, provided that molecules with sufficiently long coherence times can be developed and accurately integrated into specific areas of the device. This architecture has an enormous potential for scaling up quantum computation thanks to the microscopic nature of the individual constituents, the molecules, and the possibility of using their internal spin degrees of freedom.
引用
收藏
页码:16682 / 16693
页数:12
相关论文
共 50 条
  • [31] Quantum dynamics of crystals of molecular nanomagnets inside a resonant cavity
    Tejada, J
    Amigo, R
    Hernandez, JM
    Chudnovsky, EM
    PHYSICAL REVIEW B, 2003, 68 (01)
  • [32] Molecular nanomagnets
    Hendrickson, DN
    Christou, G
    Ishimoto, H
    Yoo, J
    Brechin, EK
    Yamaguchi, A
    Rumberger, EM
    Aubin, SMJ
    Sun, ZM
    Aromi, G
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2002, 376 : 301 - 313
  • [33] Molecular Nanomagnets as Qubits with Embedded Quantum-Error Correction
    Chiesa, A.
    Macaluso, E.
    Petiziol, F.
    Wimberger, S.
    Santini, P.
    Carretta, S.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (20): : 8610 - 8615
  • [34] A quantum logic array microarchitecture: Scalable quantum data movement and computation
    Metodi, TS
    Thaker, DD
    Cross, AW
    Chong, FT
    Chuang, IL
    MICRO-38: PROCEEDINGS OF THE 38TH ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUMN ON MICROARCHITECTURE, 2005, : 305 - 316
  • [35] Physical-resource demands for scalable quantum computation
    Caves, CM
    Deutsch, IH
    Blume-Kohout, R
    FLUCTUATIONS AND NOISE IN PHOTONICS AND QUANTUM OPTICS, 2003, 5111 : 425 - 433
  • [36] Cavity grid for scalable quantum computation with superconducting circuits
    Helmer, F.
    Mariantoni, M.
    Fowler, A. G.
    von Delft, J.
    Solano, E.
    Marquardt, F.
    EPL, 2009, 85 (05)
  • [37] Scalable Architecture for Programmable Quantum Gate Array
    Lin, Mingjie
    Ma, Yaling
    FPGA 10, 2010, : 290 - 290
  • [38] SAQIP: A Scalable Architecture for Quantum Information Processors
    Sargaran, Sahar
    Mohammadzadeh, Naser
    ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION, 2019, 16 (02)
  • [39] NMR implementation of a building block for scalable quantum computation
    Chang, DE
    Vandersypen, LMK
    Steffen, M
    CHEMICAL PHYSICS LETTERS, 2001, 338 (4-6) : 337 - 344
  • [40] Scalable and Parameterizable Processor Array Architecture for Similarity Distance Computation
    Kanan, Awos
    Gebali, Fayez
    Ibrahim, Atef
    Li, Kin Fun
    2019 10TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2019, : 245 - 249