NEW STRUCTURE FOR ORTHOGONAL QUANTUM GROUP INVARIANTS

被引:2
|
作者
Chen, Qingtao [1 ]
Liu, Kefeng [2 ,3 ]
机构
[1] Abdus Salaam Int Ctr Theoret Phys, Math Sect, I-34151 Trieste, Italy
[2] Zhejiang Univ, Ctr Math Sci, Hangzhou 310003, Zhejiang, Peoples R China
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
BRAUER CENTRALIZER ALGEBRAS; OOGURI-VAFA CONJECTURE; POLYNOMIAL INVARIANT; LINK POLYNOMIALS; KNOT INVARIANTS; CHARACTERS; PROOF;
D O I
10.1090/proc/12548
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on the orthogonal Labastida-Marino-Ooguri-Vafa conjecture made by L. Chen and Q. Chen (2012), we derive an infinite product formula for Chern-Simons partition functions, which generalizes Liu and Peng's recent results to the orthogonal case. Symmetry property of this new infinite product structure is also discussed.
引用
收藏
页码:3645 / 3657
页数:13
相关论文
共 50 条