QUANTUM GROUP INVARIANTS AND LINK POLYNOMIALS

被引:57
|
作者
ZHANG, RB
GOULD, MD
BRACKEN, AJ
机构
[1] Department of Mathematics, The University of Queensland, Brisbane, 4072, Qld.
关键词
D O I
10.1007/BF02099115
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A general method is developed for constructing quantum group invariants and determining their eigenvalues. Applied to the universal R-matrix this method leads to the construction of a closed formula for link polynomials. To illustrate the application of this formula, the quantum groups U(q)(E8), U(q)(so(2m + 1)) and U(q)(gl(m)) are considered as examples, and corresponding link polynomials are obtained.
引用
收藏
页码:13 / 27
页数:15
相关论文
共 50 条
  • [1] Quantum automata, braid group and link polynomials
    Garnerone, Silvano
    Marzuoli, Annalisa
    Rasetti, Mario
    QUANTUM INFORMATION & COMPUTATION, 2007, 7 (5-6) : 479 - 503
  • [2] Quantum automata, braid group and link polynomials
    Garnerone, Silvano
    Marzuoli, Annalisa
    Rasetti, Mario
    Quantum Information and Computation, 2007, 7 (5-6): : 479 - 503
  • [3] INVARIANTS OF 3-MANIFOLDS VIA LINK POLYNOMIALS AND QUANTUM GROUPS
    RESHETIKHIN, N
    TURAEV, VG
    INVENTIONES MATHEMATICAE, 1991, 103 (03) : 547 - 597
  • [4] GROUP INVARIANTS AND POINCARE POLYNOMIALS
    COXETER, HSM
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 57 (04) : 255 - 255
  • [5] QUANTUM DOUBLE FINITE-GROUP ALGEBRAS AND LINK POLYNOMIALS
    TSOHANTJIS, I
    GOULD, MD
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1994, 49 (02) : 177 - 204
  • [6] Local invariants of braiding quantum gates-associated link polynomials and entangling power
    Padmanabhan, Pramod
    Sugino, Fumihiko
    Trancanelli, Diego
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (13)
  • [7] Graph polynomials and link invariants as positive type functions on Thompson's group F
    Aiello, Valeriano
    Conti, Roberto
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2019, 28 (02)
  • [8] QUANTUM HOLONOMY AND LINK INVARIANTS
    LEE, HC
    ZHU, ZY
    PHYSICAL REVIEW D, 1991, 44 (04): : R942 - R945
  • [9] SCHUBERT POLYNOMIALS, THETA AND ETA POLYNOMIALS, AND WEYL GROUP INVARIANTS
    Tamvakis, Harry
    MOSCOW MATHEMATICAL JOURNAL, 2021, 21 (01) : 191 - 226
  • [10] QUANTUM SUPERGROUPS AND LINK POLYNOMIALS
    GOULD, MD
    TSOHANTJIS, I
    BRACKEN, AJ
    REVIEWS IN MATHEMATICAL PHYSICS, 1993, 5 (03) : 533 - 549