NEW STRUCTURE FOR ORTHOGONAL QUANTUM GROUP INVARIANTS

被引:2
|
作者
Chen, Qingtao [1 ]
Liu, Kefeng [2 ,3 ]
机构
[1] Abdus Salaam Int Ctr Theoret Phys, Math Sect, I-34151 Trieste, Italy
[2] Zhejiang Univ, Ctr Math Sci, Hangzhou 310003, Zhejiang, Peoples R China
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
BRAUER CENTRALIZER ALGEBRAS; OOGURI-VAFA CONJECTURE; POLYNOMIAL INVARIANT; LINK POLYNOMIALS; KNOT INVARIANTS; CHARACTERS; PROOF;
D O I
10.1090/proc/12548
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on the orthogonal Labastida-Marino-Ooguri-Vafa conjecture made by L. Chen and Q. Chen (2012), we derive an infinite product formula for Chern-Simons partition functions, which generalizes Liu and Peng's recent results to the orthogonal case. Symmetry property of this new infinite product structure is also discussed.
引用
收藏
页码:3645 / 3657
页数:13
相关论文
共 50 条
  • [41] QUANTUM INVARIANTS
    RAY, JR
    PHYSICAL REVIEW A, 1983, 28 (05): : 2603 - 2605
  • [42] Quantum Lorentz-group invariants of n-qubit systems
    Teodorescu-Frumosu, Mihail
    Jaeger, Gregg
    Physical Review A - Atomic, Molecular, and Optical Physics, 2003, 67 (05): : 523051 - 523056
  • [43] On the relation between two quantum group invariants of 3-cobordisms
    Beliakova, A
    Durhuus, B
    JOURNAL OF GEOMETRY AND PHYSICS, 1996, 20 (04) : 305 - 317
  • [44] On orthogonal and special orthogonal invariants of a single matrix of small order
    Dokovic, Dragomir Z.
    LINEAR & MULTILINEAR ALGEBRA, 2009, 57 (04): : 345 - 354
  • [45] NEW METHOD IN PROBABILISTIC THEORY OF STRUCTURE INVARIANTS
    HAUPTMAN, H
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 1975, 31 (SEP1): : 680 - 687
  • [46] SOME NEW RELATIONSHIPS AMONG STRUCTURE INVARIANTS
    HAUPTMAN, H
    ACTA CRYSTALLOGRAPHICA, 1963, 16 (08): : 792 - &
  • [47] Global invariants of paths and curves for the group of orthogonal transformations in the two-dimensional Euclidean space
    Khadjiev, Djavvat
    Oren, Idris
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2019, 27 (02): : 37 - 65
  • [48] ORTHOGONAL INVARIANTS FOR CERTAIN CLASSES OF OPERATORS
    ROBERT, D
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1973, 52 (01): : 81 - 114
  • [49] Orthogonal bases of invariants in tensor models
    Pablo Diaz
    Soo-Jong Rey
    Journal of High Energy Physics, 2018
  • [50] Fibers of orthogonal and symplectic matrix invariants
    Seelinger, GF
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (01) : 237 - 248