Effects of delignification in the production of plant-based cellulose nanofibers for optically transparent nanocomposites

被引:56
|
作者
Okahisa, Yoko [1 ]
Abe, Kentaro [2 ]
Nogi, Masaya [3 ]
Nakagaito, A. N. [4 ,5 ]
Nakatani, Takeshi [2 ,6 ]
Yano, Hiroyuki [2 ]
机构
[1] Kobe Univ, Grad Sch Human Dev & Environm, Nada Ku, Kobe, Hyogo 6578501, Japan
[2] Kyoto Univ, Res Inst Sustainable Humanosphere, Kyoto, Japan
[3] Osaka Univ, Inst Sci & Ind Res, Osaka, Japan
[4] Tottori Univ, Fac Engn, Tottori 680, Japan
[5] Univ Tokushima, Grad Sch Engn, Tokushima 770, Japan
[6] Natl Inst Adv Ind Sci & Technol, Aichi, Japan
基金
日本学术振兴会;
关键词
Nanocomposites; Thermal properties; Scanning electron microscopy; Thermogravimetric analysis; Bamboo; BAMBOO; FIBER; LIGNIFICATION; MICROFIBRILS; COMPOSITES; FIBRILS; MATRIX; CULMS;
D O I
10.1016/j.compscitech.2011.05.006
中图分类号
TB33 [复合材料];
学科分类号
摘要
The pulp-making procedures prior to nanofibrillation require considerable chemical treatments to leach the matrix substances. In particular, the sodium chlorite (NaClO2) solution treatment is cyclically applied to remove lignin. In this study, we clarified the effects of delignification in the production of cellulose nanofibers and nanocomposites through a comparison of plants with lignin (2 year old lignified mature bamboo culms) and without lignin (immature bamboo shoot culms). We concluded that the NaClO2 treatment might have degraded the cellulose nanofibers, as we found that the morphology and properties of the cellulose nanofibers extracted from mature bamboo had no advantages over the nanofibers from immature bamboo. In addition, the light transmittance of the cellulose nanocomposites from immature bamboo was higher even at lower wavelengths. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1342 / 1347
页数:6
相关论文
共 50 条
  • [31] Preparation and characterization of transparent PMMA-cellulose-based nanocomposites
    Kiziltas, Esra Erbas
    Kiziltasa, Alper
    Bollin, Shannon C.
    Gardner, Douglas J.
    CARBOHYDRATE POLYMERS, 2015, 127 : 381 - 389
  • [32] Preparation of Ultralong Cellulose Nanofibers and Optically Transparent Nanopapers Derived from Waste Corrugated Paper Pulp
    Wang, Haiying
    Li, Dagang
    Zhang, Ranran
    BIORESOURCES, 2013, 8 (01): : 1374 - 1384
  • [34] Effects of Growth Stage of Bamboo on the Production of Cellulose Nanofibers
    Yoko Okahisa
    Hiroki Sakata
    Fibers and Polymers, 2019, 20 : 1641 - 1648
  • [35] Effects of Growth Stage of Bamboo on the Production of Cellulose Nanofibers
    Okahisa, Yoko
    Sakata, Hiroki
    FIBERS AND POLYMERS, 2019, 20 (08) : 1641 - 1648
  • [36] Automated Production of Plant-Based Vaccines and Pharmaceuticals
    Wirz, Holger
    Sauer-Budge, Alexis F.
    Briggs, John
    Sharpe, Aaron
    Shu, Sudong
    Sharon, Andre
    JALA, 2012, 17 (06): : 449 - 457
  • [37] A comprehensive framework for the production of plant-based molecules
    Hu, Huayi
    Du, Hao
    NATURE FOOD, 2024, 5 (06): : 461 - 462
  • [38] Plant-based production of recombinant mugwort allergens
    Gadermaier, G
    Krebitz, M
    Wagner, B
    Breiteneder, H
    Obermeyer, G
    Ferreira, F
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2001, 107 (02) : S56 - S57
  • [39] Plant-based fertilizers for organic vegetable production
    Sorensen, Jorn Nygaard
    Thorup-Kristensen, Kristian
    JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, 2011, 174 (02) : 321 - 332
  • [40] Production of graphitic carbons from plant-based SiC/C nanocomposites for Li-ion batteries
    Haluska, Ondrej
    Mesceriakove, Sara-Maaria
    Murashko, Kirill
    Mesceriakovas, Arunas
    Kalidas, Nathiya
    Rantanen, Jimi
    Liu, Lizhi
    Salami, Ayobami
    Lappalainen, Reijo
    Lahde, Anna
    Lehto, Vesa-Pekka
    Riikonen, Joakim
    MATERIALS CHEMISTRY AND PHYSICS, 2023, 296