Effects of delignification in the production of plant-based cellulose nanofibers for optically transparent nanocomposites

被引:56
|
作者
Okahisa, Yoko [1 ]
Abe, Kentaro [2 ]
Nogi, Masaya [3 ]
Nakagaito, A. N. [4 ,5 ]
Nakatani, Takeshi [2 ,6 ]
Yano, Hiroyuki [2 ]
机构
[1] Kobe Univ, Grad Sch Human Dev & Environm, Nada Ku, Kobe, Hyogo 6578501, Japan
[2] Kyoto Univ, Res Inst Sustainable Humanosphere, Kyoto, Japan
[3] Osaka Univ, Inst Sci & Ind Res, Osaka, Japan
[4] Tottori Univ, Fac Engn, Tottori 680, Japan
[5] Univ Tokushima, Grad Sch Engn, Tokushima 770, Japan
[6] Natl Inst Adv Ind Sci & Technol, Aichi, Japan
基金
日本学术振兴会;
关键词
Nanocomposites; Thermal properties; Scanning electron microscopy; Thermogravimetric analysis; Bamboo; BAMBOO; FIBER; LIGNIFICATION; MICROFIBRILS; COMPOSITES; FIBRILS; MATRIX; CULMS;
D O I
10.1016/j.compscitech.2011.05.006
中图分类号
TB33 [复合材料];
学科分类号
摘要
The pulp-making procedures prior to nanofibrillation require considerable chemical treatments to leach the matrix substances. In particular, the sodium chlorite (NaClO2) solution treatment is cyclically applied to remove lignin. In this study, we clarified the effects of delignification in the production of cellulose nanofibers and nanocomposites through a comparison of plants with lignin (2 year old lignified mature bamboo culms) and without lignin (immature bamboo shoot culms). We concluded that the NaClO2 treatment might have degraded the cellulose nanofibers, as we found that the morphology and properties of the cellulose nanofibers extracted from mature bamboo had no advantages over the nanofibers from immature bamboo. In addition, the light transmittance of the cellulose nanocomposites from immature bamboo was higher even at lower wavelengths. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1342 / 1347
页数:6
相关论文
共 50 条
  • [1] Cellulose reinforcement of plant-based protein hydrogels: Effects of cellulose nanofibers and nanocrystals on physicochemical properties
    Ryu, Jaekun
    McClements, David Julian
    FOOD HYDROCOLLOIDS, 2025, 158
  • [2] Water Hyacinth as a Renewable Source of Cellulose Nanofibers: Fabrication and Properties of Optically Transparent Nanocomposites
    Tanpichai, Supachok
    Biswas, Subir Kumar
    Journal of Natural Fibers, 2024, 21 (01)
  • [3] Optically transparent paper from cellulose nanofibers
    Nogi, Masaya
    Iwamoto, Shinichiro
    Nakagaito, Antonio Norio
    Yano, Hiroyuki
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237
  • [4] Optically Transparent Nanocomposite Based on Cellulose Nanofibers from Newspapers and Polyurethane
    Li, Xueting
    Li, Dagang
    Xu, Li
    Wang, Yumei
    Lin, Dongliang
    ADVANCED BUILDING MATERIALS AND SUSTAINABLE ARCHITECTURE, PTS 1-4, 2012, 174-177 : 905 - +
  • [5] Optically transparent nanocomposites reinforced with modified biocellulose nanofibers
    Dahman, Yaser
    Oktem, Tulin
    JOURNAL OF APPLIED POLYMER SCIENCE, 2012, 126 : E187 - E195
  • [6] Optically transparent composites reinforced with plant fiber-based nanofibers
    S. Iwamoto
    A.N. Nakagaito
    H. Yano
    M. Nogi
    Applied Physics A, 2005, 81 : 1109 - 1112
  • [7] Optically transparent composites reinforced with plant fiber-based nanofibers
    Iwamoto, S
    Nakagaito, AN
    Yano, H
    Nogi, M
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2005, 81 (06): : CP8 - 1112
  • [8] CELL 25-Optically transparent cellulose nanocomposites
    Yano, Hiroyuki
    Nogi, Masaya
    Ifuku, Shinsuke
    Abe, Kentaro
    Iwamoto, Shinichiro
    Handa, Keishin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2008, 235
  • [9] Research and application of optically transparent wood-cellulose nanocomposites
    Yano, Hiroyuki
    Okahisa, Yoko
    Abe, Kentaro
    Iwamoto, Shinichiro
    Nogi, Masaya
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237
  • [10] Chemical Modification of Cellulose Nanofibers for the Production of Highly Thermal Resistant and Optically Transparent Nanopaper for Paper Devices
    Yagyu, Hitomi
    Saito, Tsuguyuki
    Isogai, Akira
    Koga, Hirotaka
    Nogi, Masaya
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (39) : 22012 - 22017