Existence results for Riemann-Liouville fractional integro-differential inclusions with fractional nonlocal integral boundary conditions

被引:2
|
作者
Ahmad, Bashir [1 ]
Alghamdi, Badrah [1 ]
Alsaedi, Ahmed [1 ]
Ntouyas, K. Sotiris [1 ,2 ]
机构
[1] King Abdulaziz Univ, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, Fac Sci, POB 80203, Jeddah 21589, Saudi Arabia
[2] Univ Ioannina, Dept Math, Ioannina 45110, Greece
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 07期
关键词
Riemann-Liouville fractional derivative; integro-differential inclusions; nonlocal multi conditions; existence; fixed; DIFFERENTIAL-INCLUSIONS; EQUATIONS;
D O I
10.3934/math.2021416
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new class of problems consisting of Riemann-Liouville fractional integrodifferential inclusions supplemented with fractional nonlocal multi-point boundary conditions. The existence results for the given problem are derived in the weighted space with the aid of appropriate fixed point theorems for multi-valued maps. Numerical examples are constructed for the illustration of the obtained results.
引用
收藏
页码:7093 / 7110
页数:18
相关论文
共 50 条
  • [31] On Sequential Fractional Integro-Differential Equations with Nonlocal Integral Boundary Conditions
    Bashir Ahmad
    Ahmed Alsaedi
    Ravi P. Agarwal
    Alaa Alsharif
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 : 1725 - 1737
  • [32] On Sequential Fractional Integro-Differential Equations with Nonlocal Integral Boundary Conditions
    Ahmad, Bashir
    Alsaedi, Ahmed
    Agarwal, Ravi P.
    Alsharif, Alaa
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (04) : 1725 - 1737
  • [33] A study of mixed Hadamard and Riemann-Liouville fractional integro-differential inclusions via endpoint theory
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    [J]. APPLIED MATHEMATICS LETTERS, 2016, 52 : 9 - 14
  • [34] System of Riemann-Liouville fractional differential equations with nonlocal boundary conditions: Existence, uniqueness, and multiplicity of solutions
    Padhi, Seshadev
    Prasad, B. S. R., V
    Mahendru, Divya
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (10) : 8125 - 8149
  • [35] Coupled systems of Riemann-Liouville fractional differential equations with Hadamard fractional integral boundary conditions
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Sudsutad, Weerawat
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (01): : 295 - 308
  • [36] Existence results for fractional order differential equation with nonlocal Erdelyi-Kober and generalized Riemann-Liouville type integral boundary conditions at resonance
    Sun, Qiao
    Meng, Shuman
    Cui, Yujun
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [37] Existence Results for Nonlinear Coupled Hilfer Fractional Differential Equations with Nonlocal Riemann-Liouville and Hadamard-Type Iterated Integral Boundary Conditions
    Theswan, Sunisa
    Ntouyas, Sotiris K.
    Ahmad, Bashir
    Tariboon, Jessada
    [J]. SYMMETRY-BASEL, 2022, 14 (09):
  • [38] On coupled impulsive fractional integro-differential equations with Riemann-Liouville derivatives
    Wang, Xiaoming
    Alam, Mehboob
    Zada, Akbar
    [J]. AIMS MATHEMATICS, 2021, 6 (02): : 1561 - 1595
  • [39] NONLINEAR RIEMANN-LIOUVILLE FRACTIONAL DIFFERENTIAL EQUATIONS WITH NONLOCAL ERDELYI-KOBER FRACTIONAL INTEGRAL CONDITIONS
    Thongsalee, Natthaphong
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (02) : 480 - 497
  • [40] Existence and Ulam-Hyers Stability Results for a Class of Fractional Integro-Differential Equations Involving Nonlocal Fractional Integro-Differential Boundary Conditions
    Haddouchi, Faouzi
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42