A study of mixed Hadamard and Riemann-Liouville fractional integro-differential inclusions via endpoint theory

被引:45
|
作者
Ahmad, Bashir [1 ]
Ntouyas, Sotiris K. [1 ,2 ]
Tariboon, Jessada [3 ]
机构
[1] King Abdulaziz Univ, Dept Math, Fac Sci, NAAM Res Grp, Jeddah 21589, Saudi Arabia
[2] Univ Ioannina, Dept Math, GR-45110 Ioannina, Greece
[3] King Mongkuts Univ Technol North Bangkok, Fac Sci Appl, Dept Math, Nonlinear Dynam Anal Res Ctr, Bangkok 10800, Thailand
关键词
Hadamard derivative; Riemann-Liouville fractional integral; Inclusions; Endpoint theory; DERIVATIVES; PARAMETERS; SYSTEMS; ORDER;
D O I
10.1016/j.aml.2015.08.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the existence of solutions for a mixed initial value problem of Hadamard and Riemann-Liouville fractional integro-differential inclusions by means of endpoint theory. The main result is well illustrated with the aid of example. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:9 / 14
页数:6
相关论文
共 50 条
  • [1] Existence results for mixed Hadamard and Riemann-Liouville fractional integro-differential inclusions
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (12): : 6333 - 6347
  • [2] Existence results for mixed Hadamard and Riemann-Liouville fractional integro-differential equations
    Bashir Ahmad
    Sotiris K Ntouyas
    Jessada Tariboon
    [J]. Advances in Difference Equations, 2015
  • [3] Existence results for mixed Hadamard and Riemann-Liouville fractional integro-differential equations
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [4] Existence Theorems for Mixed Riemann-Liouville and Caputo Fractional Differential Equations and Inclusions with Nonlocal Fractional Integro-Differential Boundary Conditions
    Ntouyas, Sotiris K.
    Alsaedi, Ahmed
    Ahmad, Bashir
    [J]. FRACTAL AND FRACTIONAL, 2019, 3 (02) : 1 - 20
  • [5] Existence results for Riemann-Liouville fractional integro-differential inclusions with fractional nonlocal integral boundary conditions
    Ahmad, Bashir
    Alghamdi, Badrah
    Alsaedi, Ahmed
    Ntouyas, K. Sotiris
    [J]. AIMS MATHEMATICS, 2021, 6 (07): : 7093 - 7110
  • [6] On coupled impulsive fractional integro-differential equations with Riemann-Liouville derivatives
    Wang, Xiaoming
    Alam, Mehboob
    Zada, Akbar
    [J]. AIMS MATHEMATICS, 2021, 6 (02): : 1561 - 1595
  • [7] Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions
    Ahmad, Bashir
    Nieto, Juan J.
    [J]. BOUNDARY VALUE PROBLEMS, 2011, : 1 - 9
  • [8] Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions
    Bashir Ahmad
    Juan J Nieto
    [J]. Boundary Value Problems, 2011
  • [9] Monotone Iterative Technique for Riemann-Liouville Fractional Integro-Differential Equations with Advanced Arguments
    Liu, Zhenhai
    Sun, Jihua
    Szanto, Ivan
    [J]. RESULTS IN MATHEMATICS, 2013, 63 (3-4) : 1277 - 1287
  • [10] Boundary Value Problems for Riemann-Liouville Fractional Differential Inclusions with Nonlocal Hadamard Fractional Integral Conditions
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    Sudsutad, Weerawat
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (03) : 939 - 954