NONLINEAR *-JORDAN-TYPE DERIVATIONS ON ALTERNATIVE *-ALGEBRAS

被引:2
|
作者
Andrade, A. J. O. [1 ]
Moraes, G. C. [1 ]
Ferreira, R. N. [2 ]
Ferreira, B. L. M. [2 ]
机构
[1] Fed Univ ABC, 5001 Estados Ave, BR-09210580 Santo Andre, SP, Brazil
[2] Fed Univ Technol, 800 Prof Laura Pacheco Bastos Ave, BR-85053510 Guarapuava, Brazil
关键词
*-Jordan-type derivation; *-derivation; alternative *-algebras; MAPS; PRODUCT; ADDITIVITY; RINGS;
D O I
10.33048/semi.2022.19.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be an unital alternative *-algebra. Assume that A contains a nontrivial symmetric idempotent element e which satisfies x(A) . e = 0 implies x = 0 and xA . (1(A) - e) = 0 implies x = 0. In this paper, it is shown that Phi is a nonlinear *-Jordan-type derivation on A if and only if Phi is an additive *-derivation. As application, we get a result on alternative W*-algebras.
引用
收藏
页码:125 / 137
页数:13
相关论文
共 50 条
  • [41] Jordan, Jordan Right and Jordan Left Derivations on Convolution Algebras
    Gandomani, Mohammad Hossein Ahmadi
    Mehdipour, Mohammad Javad
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2019, 45 (01) : 189 - 204
  • [42] Jordan, Jordan Right and Jordan Left Derivations on Convolution Algebras
    Mohammad Hossein Ahmadi Gandomani
    Mohammad Javad Mehdipour
    [J]. Bulletin of the Iranian Mathematical Society, 2019, 45 : 189 - 204
  • [43] Generalized Lie-Type Derivations of Alternative Algebras
    Ferreira, B. L. M.
    de Moraes, G. C.
    [J]. RUSSIAN MATHEMATICS, 2021, 65 (09) : 33 - 40
  • [44] Jordan derivations of alternative rings
    Macedo Ferreira, Bruno Leonardo
    Guzzo Jr, Henrique
    Ferreira, Ruth Nascimento
    Wei, Feng
    [J]. COMMUNICATIONS IN ALGEBRA, 2020, 48 (02) : 717 - 723
  • [45] Jordan derivations of unital algebras with idempotents
    Benkovic, Dominik
    Sirovnik, Nejc
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (09) : 2271 - 2284
  • [46] Jordan generalized derivations on triangular algebras
    Li, Yanbo
    Benkovic, Dominik
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (08): : 841 - 849
  • [47] Jordan Higher Derivations of Triangular Algebras
    Yang, Aili
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2015, 53 (01): : 68 - 73
  • [48] Jordan Higher Derivations of Incidence Algebras
    Lizhen Chen
    Zhankui Xiao
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 431 - 442
  • [49] A note on Jordan σ-derivations of triangular algebras
    Wang, Yu
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (03): : 639 - 644
  • [50] LIE BRACKET JORDAN DERIVATIONS IN BANACH JORDAN ALGEBRAS
    Paokanta, Siriluk
    Lee, Jung Rye
    [J]. JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2021, 28 (02): : 91 - 102