COHERENT MEG/EEG SOURCE LOCALIZATION IN TRANSFORMED DATA SPACE

被引:3
|
作者
Zhang, Junpeng [1 ]
Dalal, Sarang S. [2 ]
Nagarajan, Srikantan S. [3 ]
Yao, Dezhong [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Life Sci & Technol, Minist Educ, Key Lab NeuroInformat, Chengdu 610054, Peoples R China
[2] INSERM, Mental Proc & Brain Activat Lab, F-69500 Bron, France
[3] Univ Calif San Francisco, Dept Radiol, San Francisco, CA 94143 USA
关键词
MEG; sLORETA; AEF; Brain source localization; MUSIC; RECONSTRUCTING SPATIOTEMPORAL ACTIVITIES; EEG SOURCE LOCALIZATION; ELECTROMAGNETIC TOMOGRAPHY; ELECTRICAL-ACTIVITY; MEG; BRAIN; RESOLUTION; MUSIC; BEAMFORMER;
D O I
10.4015/S1016237210002110
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In some cases, different brain regions give rise to strongly-coherent electrical neural activities. For example, pure tone evoked activations of the bilateral auditory cortices exhibit strong coherence. Conventional 2nd order statistics-based spatio-temporal algorithms, such as MUSIC (MUltiple SIgnal Classification) and beamforming encounter difficulties in localizing such activities. In this paper, we proposed a novel solution for this case. The key idea is to map the measurement data into a new data space through a transformation prior to the localization. The orthogonal complement of the lead field matrix for the region to be suppressed is generated as the transformation matrix. Using a priori knowledge or another independent imaging method, such as sLORETA (standard LOw REsolution brain electromagnetic TomogrAphy), the coherent source regions can be primarily identified. And then, in the transformed data space a conventional spatio-temporal method, such as MUSIC, can be used to accomplish the localization of the remaining coherent sources. Repeatedly applying the method will achieve localization of all the coherent sources. The algorithm was validated by simulation experiments as well as by the reconstructions of real bilateral auditory cortical coherent activities.
引用
收藏
页码:351 / 365
页数:15
相关论文
共 50 条
  • [41] Simultaneous EEG and MEG source analysis
    van Zuijen, TL
    Heslenfeld, DJ
    Huizenga, HM
    [J]. JOURNAL OF PSYCHOPHYSIOLOGY, 2000, 14 (04) : 266 - 266
  • [42] Simultaneous MEG and EEG source analysis
    Huizenga, HM
    van Zuijen, TL
    Heslenfeld, DJ
    Molenaar, PCM
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2001, 46 (07): : 1737 - 1751
  • [43] Sensitivity of MEG and EEG to Source Orientation
    Ahlfors, Seppo P.
    Han, Jooman
    Belliveau, John W.
    Haemaelaeinen, Matti S.
    [J]. BRAIN TOPOGRAPHY, 2010, 23 (03) : 227 - 232
  • [44] Sensitivity of MEG and EEG to Source Orientation
    Seppo P. Ahlfors
    Jooman Han
    John W. Belliveau
    Matti S. Hämäläinen
    [J]. Brain Topography, 2010, 23 : 227 - 232
  • [45] DYNAMO: Concurrent dynamic multi-model source localization method for EEG and/or MEG
    Antelis, Javier M.
    Minguez, Javier
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2013, 212 (01) : 28 - 42
  • [46] Truncated RAP-MUSIC (TRAP-MUSIC) for MEG and EEG source localization
    Makela, Niko
    Stenroos, Matti
    Sarvas, Jukka
    Ilmoniemi, Risto J.
    [J]. NEUROIMAGE, 2018, 167 : 73 - 83
  • [47] Source Localization with MEG Data: A Beamforming Approach Based on Covariance Thresholding
    Zhang, Jian
    Liu, Chao
    Green, Gary
    [J]. BIOMETRICS, 2014, 70 (01) : 121 - 131
  • [48] MEG VERSUS EEG LOCALIZATION TEST - REPLY
    COHEN, D
    [J]. ANNALS OF NEUROLOGY, 1991, 30 (02) : 223 - 224
  • [49] Localization techniques for EEG and MEG in children and adolescents
    Brandl, U
    [J]. NERVENHEILKUNDE, 1999, 18 (06) : 282 - 286
  • [50] Comparison of distributed source localization methods for EEG data
    Seeland, A.
    Straube, S.
    Kirchner, F.
    [J]. PERCEPTION, 2013, 42 : 220 - 220