Machine Learning and Deep Learning Methods for Intrusion Detection Systems in IoMT: A survey

被引:0
|
作者
Rbah, Yahya [1 ]
Mahfoudi, Mohammed [1 ]
Balboul, Younes [1 ]
Fattah, Mohammed [2 ]
Mazer, Said [1 ]
Elbekkali, Moulhime [1 ]
Bernoussi, Benaissa [1 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ FES, Artificial Intelligence & Data Sci & Emerging Sys, Fes, Morocco
[2] Univ Moulay Ismail Meknes, Image Lab, Meknes, Morocco
关键词
IoMT; Security; Privacy; intrusion detection system (IDS); Machine Learning (ML); Deep Learning (DL); ATTACK DETECTION; SECURITY CHALLENGES; DETECTION FRAMEWORK; INTERNET; THINGS; MODEL; IOT;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The integration of healthcare-related sensors and devices into IoT has resulted in the evolution of the IoMT (Internet of Medical Things). IoMT that can be viewed as an improvement and investment in order to meet patients' needs more efficiently and effectively. It is progressively replacing traditional healthcare systems, particularly after the worldwide impact of COVID. IoMT devices have enabled real time monitoring in the healthcare field, allowing physicians to provide superior care while also keeping patients safe. As IoMT applications have evolved, the variety and volume of security threats and attacks including routing attacks and DoS (Denial of Service), for these systems have increased, necessitating specific efforts to study intrusion detection systems (IDSs) for IoMT systems. However, IDSs are generally too resource intensive to be managed by small IoMT devices, due to their limited processing resources and energy. In this regard, machine learning and deep learning approaches are the most suitable detection and control techniques for IoMT device-generated attacks. The purpose of this research is to present various methods for detecting attacks in the IoMT system. Furthermore, we review, compare, and analyze different machine learning (ML) and deep learning (DL) based mechanisms proposed to prevent and detect IoMT network attacks, emphasizing the proposed methods, performances, and limitations. Based on a comprehensive analysis of current defensive security measures, this work identifies potential open research related challenges and orientations for the actual design of those systems for IoMT networks, that may guide further research in this field.
引用
收藏
页码:740 / 748
页数:9
相关论文
共 50 条
  • [1] Machine Learning and Deep Learning Methods for Intrusion Detection Systems: A Survey
    Liu, Hongyu
    Lang, Bo
    [J]. APPLIED SCIENCES-BASEL, 2019, 9 (20):
  • [2] A Deep Learning Methods for Intrusion Detection Systems based Machine Learning in MANET
    Laqtib, Safaa
    El Yassini, Khalid
    Lahcen Hasnaoui, Moulay
    [J]. 4TH INTERNATIONAL CONFERENCE ON SMART CITY APPLICATIONS (SCA' 19), 2019,
  • [3] Machine learning and deep learning methods for intrusion detection systems: recent developments and challenges
    Kocher, Geeta
    Kumar, Gulshan
    [J]. SOFT COMPUTING, 2021, 25 (15) : 9731 - 9763
  • [4] Machine learning and deep learning methods for intrusion detection systems: recent developments and challenges
    Geeta Kocher
    Gulshan Kumar
    [J]. Soft Computing, 2021, 25 : 9731 - 9763
  • [5] Machine learning based intrusion detection system for IoMT
    Kulshrestha, Priyesh
    Vijay Kumar, T. V.
    [J]. INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2024, 15 (05) : 1802 - 1814
  • [6] Survey of learning methods in intrusion detection systems
    Aburomman, Abdulla Amin
    Reaz, Mamun Bin Ibne
    [J]. 2016 INTERNATIONAL CONFERENCE ON ADVANCES IN ELECTRICAL, ELECTRONIC AND SYSTEMS ENGINEERING (ICAEES), 2016, : 362 - 365
  • [7] A Comprehensive Survey of Databases and Deep Learning Methods for Cybersecurity and Intrusion Detection Systems
    Gumusbas, Dilara
    Yildirim, Tulay
    Genovese, Angelo
    Scotti, Fabio
    [J]. IEEE SYSTEMS JOURNAL, 2021, 15 (02): : 1717 - 1731
  • [8] A Comprehensive Survey for Machine Learning and Deep Learning Applications for Detecting Intrusion Detection
    Surakhi, Ola M.
    Garcia, Antonia Mora
    Jamoos, Mohammed
    Alkhanafseh, Mohammad Y.
    [J]. 2021 22ND INTERNATIONAL ARAB CONFERENCE ON INFORMATION TECHNOLOGY (ACIT), 2021, : 639 - 651
  • [9] Comparison of Machine Learning and Deep Learning Models for Network Intrusion Detection Systems
    Thapa, Niraj
    Liu, Zhipeng
    Kc, Dukka B.
    Gokaraju, Balakrishna
    Roy, Kaushik
    [J]. FUTURE INTERNET, 2020, 12 (10) : 1 - 16
  • [10] An investigation and comparison of machine learning approaches for intrusion detection in IoMT network
    Adel Binbusayyis
    Haya Alaskar
    Thavavel Vaiyapuri
    M. Dinesh
    [J]. The Journal of Supercomputing, 2022, 78 : 17403 - 17422