Machine learning and deep learning methods for intrusion detection systems: recent developments and challenges

被引:0
|
作者
Geeta Kocher
Gulshan Kumar
机构
[1] Maharaja Ranjit Singh Punjab Technical University,
[2] Shaheed Bhagat Singh State Technical Campus,undefined
来源
Soft Computing | 2021年 / 25卷
关键词
Intrusion detection system; Deep learning; Deep belief network; Recurrent neural network; Network intrusion detection system;
D O I
暂无
中图分类号
学科分类号
摘要
Deep learning (DL) is gaining significant prevalence in every field of study due to its domination in training large data sets. However, several applications are utilizing machine learning (ML) methods from the past several years and reported good performance. However, their limitations in terms of data complexity give rise to DL methods. Intrusion detection is one of the prominent areas in which researchers are extending DL methods. Even though several excellent surveys cover the growing body of research on this subject, the literature lacks a detailed comparison of ML methods such as ANN, SVM, fuzzy approach, swarm intelligence and evolutionary computation methods in intrusion detection, particularly on recent research. In this context, the present paper deals with the systematic review of ML methods and DL methods in intrusion detection. In addition to reviewing ML and DL methods, this paper also focuses on benchmark datasets, performance evaluation measures and various applications of DL methods for intrusion detection. The present paper summarizes the recent work, compares their experimental results for detecting network intrusions. Furthermore, current research challenges are identified for helping fellow researchers in the era of DL-based intrusion detection.
引用
收藏
页码:9731 / 9763
页数:32
相关论文
共 50 条
  • [1] Machine learning and deep learning methods for intrusion detection systems: recent developments and challenges
    Kocher, Geeta
    Kumar, Gulshan
    [J]. SOFT COMPUTING, 2021, 25 (15) : 9731 - 9763
  • [2] Machine Learning and Deep Learning Methods for Intrusion Detection Systems: A Survey
    Liu, Hongyu
    Lang, Bo
    [J]. APPLIED SCIENCES-BASEL, 2019, 9 (20):
  • [3] A Deep Learning Methods for Intrusion Detection Systems based Machine Learning in MANET
    Laqtib, Safaa
    El Yassini, Khalid
    Lahcen Hasnaoui, Moulay
    [J]. 4TH INTERNATIONAL CONFERENCE ON SMART CITY APPLICATIONS (SCA' 19), 2019,
  • [4] Machine Learning and Deep Learning Methods for Intrusion Detection Systems in IoMT: A survey
    Rbah, Yahya
    Mahfoudi, Mohammed
    Balboul, Younes
    Fattah, Mohammed
    Mazer, Said
    Elbekkali, Moulhime
    Bernoussi, Benaissa
    [J]. 2022 2ND INTERNATIONAL CONFERENCE ON INNOVATIVE RESEARCH IN APPLIED SCIENCE, ENGINEERING AND TECHNOLOGY (IRASET'2022), 2022, : 740 - 748
  • [5] The Intrusion Detection System by Deep Learning Methods: Issues and Challenges
    Surakhi, Ola
    Garcia, Antonio
    Jamoos, Mohammed
    Alkhanafseh, Mohammad
    [J]. INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2022, 19 (3A) : 501 - 513
  • [6] Comparison of Machine Learning and Deep Learning Models for Network Intrusion Detection Systems
    Thapa, Niraj
    Liu, Zhipeng
    Kc, Dukka B.
    Gokaraju, Balakrishna
    Roy, Kaushik
    [J]. FUTURE INTERNET, 2020, 12 (10) : 1 - 16
  • [7] A review on recent developments in cancer detection using Machine Learning and Deep Learning models
    Maurya, Sonam
    Tiwari, Sushil
    Mothukuri, Monika Chowdary
    Tangeda, Chandra Mallika
    Nandigam, Rohitha Naga Sri
    Addagiri, Durga Chandana
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 80
  • [8] Deep Learning Methods applied to Intrusion Detection: Survey, Taxonomy and Challenges
    Lifandali, Oumaima
    Abghour, Noreddine
    [J]. 2021 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATION (DASA), 2021,
  • [9] Review: Deep Learning Methods for Cybersecurity and Intrusion Detection Systems
    Macas, Mayra
    Wu, Chunming
    [J]. 2020 IEEE LATIN-AMERICAN CONFERENCE ON COMMUNICATIONS (LATINCOM 2020), 2020,
  • [10] The Study of Feature Engineering in Machine Learning and Deep Learning for Network Intrusion Detection Systems
    Ning, Steven
    Khanh Nguyen
    Bagchi, Sohini
    Park, Younghee
    [J]. 2024 SILICON VALLEY CYBERSECURITY CONFERENCE, SVCC 2024, 2024,