Machine learning based intrusion detection system for IoMT

被引:4
|
作者
Kulshrestha, Priyesh [1 ]
Vijay Kumar, T. V. [1 ]
机构
[1] Jawaharlal Nehru Univ, Sch Comp & Syst Sci, New Delhi 110067, India
关键词
IoT; IoMT; EHR; Cyber-security; Intrusion detection systems;
D O I
10.1007/s13198-023-02119-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Millennials have the advantage of accessing readily available modern scientific advancements, particularly in technology. One of these technologies that encompasses varied functionalities is the Internet of Things (IoT). In the midst of the Covid-19 pandemic, IoT, specifically Internet of Medical Things (IoMT), had pivotal significance in monitoring and tracking different health parameters. It autonomously manages an individual's health data and stores the same as Electronic Health Records (EHRs). However, the networking protocols used by IoMT are not adequate enough to ensure the security and privacy of EHRs. Consequently, such technology is susceptible to cyber-attacks, which have become more prevalent over time and have taken various forms, that generally the stakeholders are not aware of. This paper introduces machine learning-driven intrusion detection systems as a solution to tackle this issue. The focus of this study is on devising a Machine Learning (ML) oriented Intrusion Detection System (IDS) designed to identify cyber-attacks targeting IoMT based systems. Several classification based ML techniques such as Multinomial Naive Bayes, Logistic Regression, Logistic Regression with Stochastic Gradient Descent, Linear Support Vector Classification, Decision Tree, Ensemble Voting Classifier, Bagging, Random Forest, Adaptive Boosting, Gradient Boosting and Extreme Gradient Boosting were used, whereupon the Adaptive Boosting was experimentally found to perform the best on performance metrics such as accuracy, precision, recall, F1-score, False Detection Rate (FDR) and False Positive Rate (FPR). Further, it was found that Adaptive boosting based IDS for IoMT performed comparatively better than the existing ToN_IoT based IDS models on performance metrics such as accuracy, F1-score, FPR and FDR.
引用
收藏
页码:1802 / 1814
页数:13
相关论文
共 50 条
  • [1] A Deep Learning-Based Intrusion Detection Technique for a Secured IoMT System
    Awotunde, Joseph Bamidele
    Abiodun, Kazeem Moses
    Adeniyi, Emmanuel Abidemi
    Folorunso, Sakinat Oluwabukonla
    Jimoh, Rasheed Gbenga
    [J]. INFORMATICS AND INTELLIGENT APPLICATIONS, 2022, 1547 : 50 - 62
  • [2] Machine Learning and Deep Learning Methods for Intrusion Detection Systems in IoMT: A survey
    Rbah, Yahya
    Mahfoudi, Mohammed
    Balboul, Younes
    Fattah, Mohammed
    Mazer, Said
    Elbekkali, Moulhime
    Bernoussi, Benaissa
    [J]. 2022 2ND INTERNATIONAL CONFERENCE ON INNOVATIVE RESEARCH IN APPLIED SCIENCE, ENGINEERING AND TECHNOLOGY (IRASET'2022), 2022, : 740 - 748
  • [3] An investigation and comparison of machine learning approaches for intrusion detection in IoMT network
    Adel Binbusayyis
    Haya Alaskar
    Thavavel Vaiyapuri
    M. Dinesh
    [J]. The Journal of Supercomputing, 2022, 78 : 17403 - 17422
  • [4] An investigation and comparison of machine learning approaches for intrusion detection in IoMT network
    Binbusayyis, Adel
    Alaskar, Haya
    Vaiyapuri, Thavavel
    Dinesh, M.
    [J]. JOURNAL OF SUPERCOMPUTING, 2022, 78 (15): : 17403 - 17422
  • [5] IoT Intrusion Detection System Based on Machine Learning
    Xu, Bayi
    Sun, Lei
    Mao, Xiuqing
    Ding, Ruiyang
    Liu, Chengwei
    [J]. ELECTRONICS, 2023, 12 (20)
  • [6] IoMT-Based Seizure Detection System Leveraging Edge Machine Learning
    Zhao, Wenshan
    Wang, Yiyuan
    Sun, Xuejiao
    Zhang, Siyu
    Li, Xia
    [J]. IEEE SENSORS JOURNAL, 2023, 23 (18) : 21474 - 21483
  • [7] Intrusion Detection System Based on Machine Learning Algorithms: A Review
    Amanoul, Sandy Victor
    Abdulazeez, Adnan Mohsin
    [J]. 2022 IEEE 18TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING & APPLICATIONS (CSPA 2022), 2022, : 79 - 84
  • [8] Intrusion Detection System for AI Box Based on Machine Learning
    Chen, Jiann-Liang
    Chen, Zheng-Zhun
    Chang, Youg-Sheng
    Li, Ching-Iang
    Kao, Tien-I
    Lin, Yu-Ting
    Xiao, Yu-Yi
    Qiu, Jian-Fu
    [J]. 2023 25TH INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY, ICACT, 2023, : 111 - 116
  • [9] An intrusion detection system based on hybrid machine learning classifier
    Reji, M.
    Joseph, Christeena
    Nancy, P.
    Mary, A. Lourdes
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (03) : 4245 - 4255
  • [10] Optimized Intrusion Detection for IoMT Networks with Tree-Based Machine Learning and Filter-Based Feature Selection
    Balhareth, Ghaida
    Ilyas, Mohammad
    [J]. SENSORS, 2024, 24 (17)