A New Inertial Subgradient Extragradient method for Solving Quasimonotone Variational Inequalities

被引:0
|
作者
Rehman, Habib Ur [1 ]
Kumam, Wiyada [2 ]
Sombut, Kamonrat [3 ]
机构
[1] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, Dept Math, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[2] Rajamangala Univ Technol Thanyaburi, Appl Math Sci & Engn Res Unit AMSERU, Dept Math & Comp Sci, Fac Sci & Technol,Program Appl Stat, Thanyaburi 12110, Pathumthani, Thailand
[3] Rajamangala Univ Technol Thanyaburi, Appl Math Sci & Engn Res Unit AMSERU, Fac Sci & Technol, Dept Math & Comp Sci, Thanyaburi 12110, Pathumthani, Thailand
来源
THAI JOURNAL OF MATHEMATICS | 2021年 / 19卷 / 03期
关键词
Variational inequality problem; Subgradient extragradient method; Weak convergence result; Quasimonotone operator; Lipschitz continuity; PSEUDOMONOTONE EQUILIBRIUM PROBLEMS; WEAK-CONVERGENCE; FIXED-POINTS; REAL;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main aim of this paper is to study the numerical solution of variational inequalities involving quasimonotone operators in infinite-dimensional real Hilbert spaces. We prove that the iterative sequence generated by the proposed algorithm for the solution of quasimonotone variational inequalities converges weakly to the solution. The main advantage of the proposed iterative scheme is that it employs an inertial scheme and a monotone stepsize rule based on operator knowledge rather than a Lipschitz constant or another line search method. Numerical results show that the proposed algorithm is effective for solving quasimonotone variational inequalities.?
引用
收藏
页码:981 / 992
页数:12
相关论文
共 50 条
  • [41] Convergence of a subgradient extragradient algorithm for solving monotone variational inequalities
    Jun Yang
    Hongwei Liu
    Guaiwei Li
    Numerical Algorithms, 2020, 84 : 389 - 405
  • [42] Inertial subgradient extragradient with projection method for solving variational inequality and fixed point problems
    Maluleka, Rose
    Ugwunnadi, Godwin Chidi
    Aphane, Maggie
    AIMS MATHEMATICS, 2023, 8 (12): : 30102 - 30119
  • [43] STRONG CONVERGENT INERTIAL TSENG?S EXTRAGRADIENT METHOD FOR SOLVING NON-LIPSCHITZ QUASIMONOTONE VARIATIONAL INEQUALITIES IN BANACH SPACES
    Mewomo, Oluwatosin T.
    Alakoya, Timilehin O.
    Yao, Jen-Chih
    Akinyemi, Lanre
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2023, 7 (01): : 145 - 172
  • [44] Inertial subgradient extragradient method for solving pseudomonotone variational inequality problems in Banach spaces
    Peng, Zai-Yun
    Peng, Zhi-Ying
    Cai, Gang
    Li, Gao-Xi
    APPLICABLE ANALYSIS, 2024, 103 (10) : 1769 - 1789
  • [45] Strong convergence of inertial subgradient extragradient method for solving variational inequality in Banach space
    Khan, A. R.
    Ugwunnadi, G. C.
    Makukula, Z. G.
    Abbas, M.
    CARPATHIAN JOURNAL OF MATHEMATICS, 2019, 35 (03) : 327 - 338
  • [46] Modified Subgradient Extragradient Method for Pseudomonotone Variational Inequalities
    Jiajia Cheng
    Hongwei Liu
    Journal of Harbin Institute of Technology(New series), 2022, 29 (04) : 41 - 48
  • [47] Modified subgradient extragradient method to solve variational inequalities
    Muangchoo, Kanikar
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2022, 25 (02): : 133 - 149
  • [48] Versions of the Subgradient Extragradient Method for Pseudomonotone Variational Inequalities
    Phan Quoc Khanh
    Duong Viet Thong
    Nguyen The Vinh
    ACTA APPLICANDAE MATHEMATICAE, 2020, 170 (01) : 319 - 345
  • [49] Versions of the Subgradient Extragradient Method for Pseudomonotone Variational Inequalities
    Phan Quoc Khanh
    Duong Viet Thong
    Nguyen The Vinh
    Acta Applicandae Mathematicae, 2020, 170 : 319 - 345
  • [50] Inertial Subgradient Extragradient Algorithm for Solving Variational Inequality Problems with Pseudomonotonicity
    Yuwan Ding
    Hongwei Liu
    Xiaojun Ma
    Journal of Harbin Institute of Technology(New series), 2023, 30 (05) : 65 - 75