A New Inertial Subgradient Extragradient method for Solving Quasimonotone Variational Inequalities

被引:0
|
作者
Rehman, Habib Ur [1 ]
Kumam, Wiyada [2 ]
Sombut, Kamonrat [3 ]
机构
[1] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, Dept Math, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[2] Rajamangala Univ Technol Thanyaburi, Appl Math Sci & Engn Res Unit AMSERU, Dept Math & Comp Sci, Fac Sci & Technol,Program Appl Stat, Thanyaburi 12110, Pathumthani, Thailand
[3] Rajamangala Univ Technol Thanyaburi, Appl Math Sci & Engn Res Unit AMSERU, Fac Sci & Technol, Dept Math & Comp Sci, Thanyaburi 12110, Pathumthani, Thailand
来源
THAI JOURNAL OF MATHEMATICS | 2021年 / 19卷 / 03期
关键词
Variational inequality problem; Subgradient extragradient method; Weak convergence result; Quasimonotone operator; Lipschitz continuity; PSEUDOMONOTONE EQUILIBRIUM PROBLEMS; WEAK-CONVERGENCE; FIXED-POINTS; REAL;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main aim of this paper is to study the numerical solution of variational inequalities involving quasimonotone operators in infinite-dimensional real Hilbert spaces. We prove that the iterative sequence generated by the proposed algorithm for the solution of quasimonotone variational inequalities converges weakly to the solution. The main advantage of the proposed iterative scheme is that it employs an inertial scheme and a monotone stepsize rule based on operator knowledge rather than a Lipschitz constant or another line search method. Numerical results show that the proposed algorithm is effective for solving quasimonotone variational inequalities.?
引用
收藏
页码:981 / 992
页数:12
相关论文
共 50 条
  • [31] An improved inertial extragradient subgradient method for solving split variational inequality problems
    Okeke, Chibueze C.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (01):
  • [32] An Inertial Extragradient Algorithm for Solving Variational Inequalities
    Guo, Ximin
    Zhao, Wenling
    ENGINEERING LETTERS, 2021, 29 (01) : 201 - 206
  • [33] A Relaxed Inertial Factor of the Modified Subgradient Extragradient Method for Solving Pseudo Monotone Variational Inequalities in Hilbert Spaces
    Duong Viet Thong
    Vu Tien Dung
    Acta Mathematica Scientia, 2023, 43 : 184 - 204
  • [34] A Relaxed Inertial Factor of the Modified Subgradient Extragradient Method for Solving Pseudo Monotone Variational Inequalities in Hilbert Spaces
    Duong Viet Thong
    Vu Tien Dung
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (01) : 184 - 204
  • [35] A RELAXED INERTIAL FACTOR OF THE MODIFIED SUBGRADIENT EXTRAGRADIENT METHOD FOR SOLVING PSEUDO MONOTONE VARIATIONAL INEQUALITIES IN HILBERT SPACES
    Duong Viet THONG
    Vu Tien DUNG
    Acta Mathematica Scientia, 2023, 43 (01) : 184 - 204
  • [36] The Tseng's Extragradient Method for Quasimonotone Variational Inequalities
    Wairojjana, Nopparat
    Pakkaranang, Nuttapol
    Jirakitpuwapat, Wachirapong
    Pholasa, Nattawut
    THAI JOURNAL OF MATHEMATICS, 2021, 19 (03): : 913 - 923
  • [37] Subgradient extragradient method with double inertial steps for quasi-monotone variational inequalities
    Li, Haiying
    Wang, Xingfang
    FILOMAT, 2023, 37 (29) : 9823 - 9844
  • [38] Modified subgradient extragradient algorithms for solving monotone variational inequalities
    Yang, Jun
    Liu, Hongwei
    Liu, Zexian
    OPTIMIZATION, 2018, 67 (12) : 2247 - 2258
  • [39] FURTHER STUDY ON THE INERTIAL TWO-SUBGRADIENT EXTRAGRADIENT METHOD FOR MONOTONE VARIATIONAL INEQUALITIES
    Cao, Yu
    Guo, Ke
    Zhao, Shilian
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2020, 21 (10) : 2225 - 2236
  • [40] Convergence of a subgradient extragradient algorithm for solving monotone variational inequalities
    Yang, Jun
    Liu, Hongwei
    Li, Guaiwei
    NUMERICAL ALGORITHMS, 2020, 84 (01) : 389 - 405