Cryogenic Characterization of 22-nm FDSOI CMOS Technology for Quantum Computing ICs

被引:79
|
作者
Bonen, S. [1 ]
Alakusu, U. [1 ]
Duan, Y. [1 ]
Gong, M. J. [1 ]
Dadash, M. S. [1 ]
Lucci, L. [2 ,3 ]
Daughton, D. R. [4 ]
Adam, G. C. [5 ,6 ]
Iordanescu, S. [5 ]
Pasteanu, M. [5 ]
Giangu, I. [5 ]
Jia, H. [7 ]
Gutierrez, L. E. [7 ]
Chen, W. T. [7 ]
Messaoudi, N. [8 ]
Harame, D. [2 ]
Mueller, A. [5 ]
Mansour, R. R. [7 ]
Asbeck, P. [9 ]
Voinigescu, S. P. [1 ]
机构
[1] Univ Toronto, Edward S Rogers Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada
[2] GlobalFoundries Fab1 LLC & Co KG, D-01109 Dresden, Germany
[3] CEA Leti, MINATEC Campus 17, F-38054 Grenoble, France
[4] Lake Shore Cryotron Inc, Westerville, OH 43082 USA
[5] IMT Bucharest, Bucharest 077190, Romania
[6] George Washington Univ, Dept Elect & Comp Engn, Washington, DC 20052 USA
[7] Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON N2L 3G1, Canada
[8] Keysight Technol, Mississauga, ON L5N 2M2, Canada
[9] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
基金
加拿大自然科学与工程研究理事会;
关键词
cryogenics; millimeter waves; quantum computing; semiconductor quantum dots; silicon germanium; silicon-on-insulator;
D O I
10.1109/LED.2018.2880303
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An approach is proposed to realize largescale, "high-temperature" and high-fidelity quantum computing integrated circuits based on single-and multiple-coupled quantum-dot electron-and hole-spin qubits monolithically integrated with the mm-wave spin manipulation and readout circuitry in a commercial CMOS technology. Measurements of minimum-size 6 nm x 20 nm x 80 nm Si-channel n-MOSFETs (electron-spin qubit), SiGe-channel p-MOSFETs (hole-spin qubit), and double quantum-dot complementary qubits reveal strong quantum effects in the subthreshold region at 2 K, characteristic of resonant tunneling in a quantum dot. S-parameter measurements of a transimpedance amplifier (TIA) for spin readout show an improved performance from 300 K to 2 K. Finally, the qubit-with-TIA circuit has 50-Omega output impedance and 78-dB Omega transimpedance gain with a unity-gain bandwidth of 70 GHz and consumes 3.1 mW.
引用
收藏
页码:127 / 130
页数:4
相关论文
共 50 条
  • [31] Compact Modelling of 22nm FDSOI CMOS Semiconductor Quantum Dot Cryogenic I-V Characteristics
    Tripathi, S. Pati
    Bonen, S.
    Nastase, C.
    Iordanescu, S.
    Boldeiu, G.
    Pasteanu, M.
    Muller, A.
    Voinigescu, S. P.
    ESSCIRC 2021 - IEEE 47TH EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC), 2021, : 43 - 46
  • [32] Extendibility of NiPt silicide contacts for CMOS technology demonstrated to the 22-nm node
    Ohuchi, Kazuya
    Lavoie, Christian
    Murray, Conal
    D'Emic, Chris
    Lauer, Isaac
    Chu, Jack O.
    Yang, Bin
    Besser, Paul
    Gignac, Lynne
    Bruley, John
    Singco, Gilbert U.
    Pagette, Francois
    Topol, Anna W.
    Rooks, Michael J.
    Bucchignano, James J.
    Narayanan, Vijay
    Khare, Mukesh
    Takayanagi, Mariko
    Ishimaru, Kazunari
    Park, Dae-Gyu
    Shahidi, Ghavam
    Solomon, Paul
    2007 IEEE INTERNATIONAL ELECTRON DEVICES MEETING, VOLS 1 AND 2, 2007, : 1029 - 1031
  • [33] Characterization of 22 nm FDSOI nMOSFETs With Different Backplane Doping at Cryogenic Temperature
    Xie, Tiantian
    Wang, Qing
    Ge, Hao
    Lv, Yinghuan
    Ren, Zhipeng
    Chen, Jing
    IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2021, 9 : 1030 - 1035
  • [34] Power and Variability Analysis of CMOS Logic Families @ 22-nm Technology Node
    Agarwal, Vivek Kumar
    Guduri, Manisha
    Islam, Aminul
    2014 3RD INTERNATIONAL CONFERENCE ON RELIABILITY, INFOCOM TECHNOLOGIES AND OPTIMIZATION (ICRITO) (TRENDS AND FUTURE DIRECTIONS), 2014,
  • [35] Design-oriented Modeling of 28 nm FDSOI CMOS Technology down to 4.2 K for Quantum Computing
    Beckers, Arnout
    Jazaeri, Farzan
    Bohuslayskyi, Heorhii
    Hutin, Louis
    De Franceschi, Silvano
    Enz, Christian
    2018 JOINT INTERNATIONAL EUROSOI WORKSHOP AND INTERNATIONAL CONFERENCE ON ULTIMATE INTEGRATION ON SILICON (EUROSOI-ULIS), 2018, : 93 - 96
  • [36] An Ultralow Power Short-Range 60-GHz FMCW Radar in 22-nm FDSOI CMOS
    Rengifo, Sammy Cerida
    Chicco, Francesco
    Le Roux, Erwan
    Enz, Christian
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2024, 72 (04) : 2548 - 2559
  • [37] A 3.1-dBm E-Band Truly Balanced Frequency Quadrupler in 22-nm FDSOI CMOS
    Vehring, Soenke
    Ding, Yaoshun
    Scholz, Philipp
    Gerfers, Friedel
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2020, 30 (12) : 1165 - 1168
  • [38] Cryogenic Modeling of 22nm FDSOI MOSFET
    Qing, Yihong
    Zhao, Jinghao
    De Smedt, Valentijn
    Prinzie, Jeffrey
    2024 INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES, SISPAD 2024, 2024,
  • [39] A 22-nm FDSOI 35-41 GHz Frequency Synthesizer
    David, J-B
    Siligaris, A.
    Prouvee, J.
    Martineau, B.
    Zarudniev, M.
    Gonzalez-Jimenez, J. L.
    2024 19TH EUROPEAN MICROWAVE INTEGRATED CIRCUITS CONFERENCE, EUMIC 2024, 2024, : 18 - 21
  • [40] Cryogenic Compact mm-Wave Broadband SPST Switch in 22nm FDSOI CMOS for Monolithic Quantum Processors
    Nhut, Tan D.
    Bonen, Shai
    Cooke, Gregory
    Jager, Thomas
    Spasaro, Michele
    Sufra, Dario
    Voinigescu, Sorin P.
    Zito, Domenico
    2022 IEEE/MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS 2022), 2022, : 168 - 171