Asymptotic analysis of a second-order singular perturbation model for phase transitions

被引:15
|
作者
Cicalese, Marco [2 ]
Spadaro, Emanuele Nunzio [1 ]
Zeppieri, Caterina Ida [3 ]
机构
[1] Hausdorff Ctr Math Bonn, D-53115 Bonn, Germany
[2] Univ Naples Federico 2, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
[3] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
基金
欧洲研究理事会;
关键词
PERIODIC PHASES; CRITERION;
D O I
10.1007/s00526-010-0356-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the asymptotic behavior, as e tends to zero, of the functionals F(epsilon)(k) introduced by Coleman and Mizel in the theory of nonlinear second-order materials; i.e., F(epsilon)(k)(u) := integral(I) (W(u)/epsilon - k epsilon (u')(2) + epsilon(3)(u '')(2))dx, u is an element of W(2,2) (I), where k > 0 and W : R. [ 0,+infinity) is a double-well potential with two potential wells of level zero at a, b is an element of R. By proving a new nonlinear interpolation inequality, we show that there exists a positive constant k(0) such that, for k < k(0), and for a class of potentials W, (F(epsilon)(k)) Gamma(L(1))-converges to F(k)(u) := m(k) # (S(u)), u is an element of BV (I; {a,b}), where m(k) is a constant depending on W and k. Moreover, in the special case of the classical potential W(s) = (s(2)-1)(2)/2, we provide an upper bound on the values of k such that the minimizers of F(epsilon)(k) cannot develop oscillations on some fine scale and a lower bound on the values for which oscillations occur, the latter improving a previous estimate by Mizel, Peletier and Troy.
引用
收藏
页码:127 / 150
页数:24
相关论文
共 50 条
  • [21] Coupled second order singular perturbations for phase transitions
    Baia, Margarida
    Barroso, Ana Cristina
    Chermisi, Milena
    Matias, Jose
    NONLINEARITY, 2013, 26 (05) : 1271 - 1311
  • [22] 2-PARAMETER SINGULAR PERTURBATION PROBLEMS FOR SECOND-ORDER EQUATIONS
    OMALLEY, RE
    JOURNAL OF MATHEMATICS AND MECHANICS, 1967, 16 (10): : 1143 - &
  • [24] Second-order sliding mode controllers for nonlinear singular perturbation systems
    Wang, J
    Tsang, KM
    ISA TRANSACTIONS, 2005, 44 (01) : 117 - 129
  • [25] First- and second-order phase transitions in the Holstein-Hubbard model
    Koller, W
    Meyer, D
    Ono, Y
    Hewson, AC
    EUROPHYSICS LETTERS, 2004, 66 (04): : 559 - 564
  • [26] Phase transitions, inhomogeneous horizons and second-order hydrodynamics
    Maximilian Attems
    Yago Bea
    Jorge Casalderrey-Solana
    David Mateos
    Miquel Triana
    Miguel Zilhão
    Journal of High Energy Physics, 2017
  • [27] Second-order surface phase transitions in electrode kinetics
    Kornyshev, AA
    Kuznetsov, AM
    Stimming, U
    Ulstrup, J
    JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (26): : 11175 - 11183
  • [28] Second-order phase transitions in amorphous gallium clusters
    Breaux, GA
    Cao, BP
    Jarrold, MF
    JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (35): : 16575 - 16578
  • [29] THEORY OF SECOND-ORDER PHASE TRANSITIONS OF DISPLACIVE TYPE
    SIROTIN, YI
    MIKHELSO.LM
    SOVIET PHYSICS SOLID STATE,USSR, 1968, 10 (06): : 1450 - +
  • [30] Phase transitions, inhomogeneous horizons and second-order hydrodynamics
    Attems, Maximilian
    Bea, Yago
    Casalderrey-Solana, Jorge
    Mateos, David
    Triana, Miquel
    Zilhao, Miguel
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (06):