Asymptotic analysis of a second-order singular perturbation model for phase transitions

被引:15
|
作者
Cicalese, Marco [2 ]
Spadaro, Emanuele Nunzio [1 ]
Zeppieri, Caterina Ida [3 ]
机构
[1] Hausdorff Ctr Math Bonn, D-53115 Bonn, Germany
[2] Univ Naples Federico 2, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
[3] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
基金
欧洲研究理事会;
关键词
PERIODIC PHASES; CRITERION;
D O I
10.1007/s00526-010-0356-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the asymptotic behavior, as e tends to zero, of the functionals F(epsilon)(k) introduced by Coleman and Mizel in the theory of nonlinear second-order materials; i.e., F(epsilon)(k)(u) := integral(I) (W(u)/epsilon - k epsilon (u')(2) + epsilon(3)(u '')(2))dx, u is an element of W(2,2) (I), where k > 0 and W : R. [ 0,+infinity) is a double-well potential with two potential wells of level zero at a, b is an element of R. By proving a new nonlinear interpolation inequality, we show that there exists a positive constant k(0) such that, for k < k(0), and for a class of potentials W, (F(epsilon)(k)) Gamma(L(1))-converges to F(k)(u) := m(k) # (S(u)), u is an element of BV (I; {a,b}), where m(k) is a constant depending on W and k. Moreover, in the special case of the classical potential W(s) = (s(2)-1)(2)/2, we provide an upper bound on the values of k such that the minimizers of F(epsilon)(k) cannot develop oscillations on some fine scale and a lower bound on the values for which oscillations occur, the latter improving a previous estimate by Mizel, Peletier and Troy.
引用
收藏
页码:127 / 150
页数:24
相关论文
共 50 条
  • [11] Fracture and second-order phase transitions
    Moreno, Y
    Gómez, JB
    Pacheco, AF
    PHYSICAL REVIEW LETTERS, 2000, 85 (14) : 2865 - 2868
  • [12] MODEL FERROMAGNET WITH FIRST AND SECOND-ORDER PHASE-TRANSITIONS
    THOMPSON, CJ
    PHYSICS LETTERS A, 1974, A 47 (01) : 23 - 24
  • [13] A second-order difference scheme for a parameterized singular perturbation problem
    Cen, Zhongdi
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 221 (01) : 174 - 182
  • [14] On a singular perturbation problem with two second-order turning points
    Yang, HP
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 190 (1-2) : 287 - 303
  • [15] Universality in the Dynamics of Second-Order Phase Transitions
    Nikoghosyan, G.
    Nigmatullin, R.
    Plenio, M. B.
    PHYSICAL REVIEW LETTERS, 2016, 116 (08)
  • [16] Second-order metropolitan urban phase transitions
    Murcio, Roberto
    Sosa-Herrera, Antonio
    Rodriguez-Romo, Suemi
    CHAOS SOLITONS & FRACTALS, 2013, 48 : 22 - 31
  • [17] QUANTUM THEORY OF SECOND-ORDER PHASE TRANSITIONS
    KOBELEV, LY
    PHYSICS OF METALS AND METALLOGRAPHY-USSR, 1967, 24 (03): : 10 - &
  • [18] ON THEORY OF SECOND-ORDER MAGNETIC PHASE TRANSITIONS
    SOLYOM, J
    ACTA CRYSTALLOGRAPHICA, 1966, S 21 : A100 - &
  • [19] Insect Mortality Caused by Baculovirus: A Model of Second-Order Phase Transitions
    V. G. Soukhovolsky
    D. K. Kurenschikov
    Yu. D. Ivanova
    A. V. Kovalev
    Biology Bulletin, 2023, 50 : 1014 - 1024
  • [20] Insect Mortality Caused by Baculovirus: A Model of Second-Order Phase Transitions
    Soukhovolsky, V. G.
    Kurenschikov, D. K.
    Ivanova, Yu. D.
    Kovalev, A. V.
    BIOLOGY BULLETIN, 2023, 50 (05) : 1014 - 1024