Microfluidic platform for integrated plasmonic detection in laminal flow

被引:5
|
作者
Campu, Andreea [1 ,2 ]
Lerouge, Frederic [3 ]
Craciun, Ana-Maria [1 ]
Murariu, Teodora [4 ]
Turcu, Ioan [4 ]
Astilean, Simion [1 ,2 ]
Monica, Focsan [1 ]
机构
[1] Babes Bolyai Univ, Nanobiophoton & Laser Microspectroscopy Ctr, Interdisciplinary Res Inst Bionanosci, Treboniu Laurean 42, Cluj Napoca 400271, Romania
[2] Babes Bolyai Univ, Biomol Phys Dept, Fac Phys, M Kogalniceanu 1, Cluj Napoca 400084, Cluj, Romania
[3] Univ Lyon 1, Ecole Normale Super Lyon, CNRS, UMR 5182,Lab Chim, 46 Allee Italie, F-69364 Lyon 07, France
[4] Natl Inst Res & Dev Isotop & Mol Technol, Donat 67-103, Cluj Napoca 400293, Romania
关键词
microfluidic chip; gold bipyramids; detection in laminal flow; LSPR; SERS; ENHANCED RAMAN-SCATTERING; GOLD NANOBIPYRAMIDS; SURFACE; IMMUNOASSAY; RESONANCE; SERS;
D O I
10.1088/1361-6528/ab8e72
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, we propose a novel approach to design robust microfluidic devices with integrated plasmonic transducers allowing portability, reduced analysis time through dynamic measurements and high sensitivity. Specifically, the strategy we apply involves two steps: (i) the controlled deposition of gold bipyramidal nanoparticles (AuBPs) onto a functionalized solid glass substrate and (ii) the integration of the as-fabricated plasmonic substrate into a polydimethylsiloxane (PDMS) microfluidic circuit. The localized surface plasmon resonance (LSPR) sensitivity of the plasmonic-microfluidic device was evaluated by monitoring the optical responses at refractive index changes, proving a bulk sensitivity of 243 nm RIU-1 for the longitudinal LSPR band of isolated AuBPs and 150 nm RIU-1 for the band assigned to end-to-end linked nanoparticles. A strong electric field generated in the gaps between AuBPs-due to the generation of the so-called extrinsic 'hot-spots'-was subsequently proved by the volumetric surface enhanced Raman scattering (SERS) detection of molecules in continuous flow conditions by loading the analyte into the microfluidic channel via a syringe pump. In conclusion, our miniaturized portable microfluidic system aims to detect and identify, in real-time with high accuracy, analyte molecules in laminal flow, thus providing a groundwork for further complex biosensing applications.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] An integrated microfluidic platform for rapid detection and subtyping of influenza viruses from clinical samples
    Chien-Hsuan Tai
    Yi-Che Tsai
    Chih-Hung Wang
    Tzong-Shiann Ho
    Chih-Peng Chang
    Gwo-Bin Lee
    Microfluidics and Nanofluidics, 2014, 16 : 501 - 512
  • [32] An integrated microfluidic platform for nucleic acid testing
    Sun, Antao
    Voparilova, Petra
    Liu, Xiaocheng
    Kou, Bingqian
    Reznicek, Tomas
    Lednicky, Tomas
    Ni, Sheng
    Kudr, Jiri
    Zitka, Ondrej
    Fohlerova, Zdenka
    Pajer, Petr
    Zhang, Haoqing
    Neuzil, Pavel
    MICROSYSTEMS & NANOENGINEERING, 2024, 10 (01):
  • [33] Integrated Digital Microfluidic Platform for Voltammetric Analysis
    Dryden, Michael D. M.
    Rackus, Darius D. G.
    Shamsi, Mohtashim H.
    Wheeler, Aaron R.
    ANALYTICAL CHEMISTRY, 2013, 85 (18) : 8809 - 8816
  • [34] INTEGRATED MICROFLUIDIC PLATFORM FOR MULTIPLEX SELEX ON A CHIP
    Kim, Soyoun
    NUCLEIC ACID THERAPEUTICS, 2011, 21 (05) : A35 - A36
  • [35] An integrated phenol 'sensoremoval' microfluidic nanostructured platform
    Mayorga-Martinez, Carmen C.
    Hlavata, Lenka
    Miserere, Sandrine
    Lopez-Marzo, Adaris
    Labuda, Jan
    Pons, Josefina
    Merkoci, Arben
    BIOSENSORS & BIOELECTRONICS, 2014, 55 : 355 - 359
  • [36] Integrated optical sensor in a digital microfluidic platform
    Luan, Lin
    Evans, Randall D.
    Jokerst, Nan M.
    Fair, Richard B.
    IEEE SENSORS JOURNAL, 2008, 8 (5-6) : 628 - 635
  • [37] A fully integrated isotachophoresis with a programmable microfluidic platform
    Shebindu, Adam
    Somaweera, Himali
    Estlack, Zachary
    Kim, Jungtae
    Kim, Jungkyu
    TALANTA, 2021, 225
  • [38] Microfluidic platform for FIA with electrochemical detection
    Muck, A
    Wang, J
    Barek, J
    CHEMICKE LISTY, 2003, 97 (09): : 957 - 960
  • [39] Au Nanoparticle-Based Integrated Microfluidic Plasmonic Chips for the Detection of Carcinoembryonic Antigen in Human Serum
    Ma, Zhengtai
    Lv, Xiaoqing
    Fang, Weihao
    Chen, Hongda
    Pei, Weihua
    Geng, Zhaoxin
    ACS APPLIED NANO MATERIALS, 2022, 5 (11) : 17281 - 17292
  • [40] Plasmonic nanoparticles in agarose gel and filter paper-integrated microfluidic devices for SERS detection of molecules
    Wu, Li-An
    Chen, Yun-Chu
    Pai, Wen-Chi
    Hsu, Yun-Hsian
    Chen, Yih-Fan
    PLASMONICS IN BIOLOGY AND MEDICINE XVII, 2020, 11257