SORPTION-ENHANCED STEAM REFORMING OF ETHANOL FOR HYDROGEN PRODUCTION

被引:0
|
作者
Avendano, R. [1 ]
Dieuzeide, M. L. [1 ]
Bonelli, P. [2 ]
Amadeo, N. [1 ]
机构
[1] ITHES UBA CONICET, Ciudad Univ, RA-1428 Buenos Aires, DF, Argentina
[2] UBA, Fac Ciencias Exactas & Nat, Ciudad Univ, RA-1428 Buenos Aires, DF, Argentina
关键词
CO2; sorbent; Ethanol steam reforming; CaO; Mayenite; THERMODYNAMIC ANALYSIS; CO2; CAO;
D O I
暂无
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In last years, sorption-enhanced steam reforming of ethanol (SESRE) has become an interesting alternative for the industry, since it offers high H-2 purity with a simpler and smaller system. In this study CaO derived materials were synthesized to improve multicyclic CO2 sorption-desorption stability. A dispersant and inert phase (Ca12Al14O33) was incorporated into CaO structure. The effects of CaO:Ca12Al14O33 ratio on the characteristics of the new absorbents and on their performance in sorption-enhanced steam reforming of ethanol were analyzed. The results obtained indicate that the absorbent 85% CaO - 15% Ca12Al14O33 had significantly improved cyclic reaction stability. Additionally, it was proved that with this adsorbent CO purity on wet basis was lower than 2 %, making it possible to attain in only one reaction stage the CO purity obtained after de WGS reactor.
引用
下载
收藏
页码:121 / 126
页数:6
相关论文
共 50 条
  • [31] Research progress in CO2 solid sorbents for hydrogen production by sorption-enhanced steam reforming: a review
    Wang, Yunzhu
    Pan, Ziheng
    Zhao, Yi
    Luo, Yongming
    Gao, Xiaoya
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2019, 38 (11): : 5103 - 5113
  • [32] Promotional role of MgO on sorption-enhanced steam reforming of ethanol over Ni/CaO catalysts
    Sang, Sier
    Zhao, Zhi-Jian
    Tian, Hao
    Sun, Zhao
    Li, Hongfang
    Assabumrungrat, Suttichai
    Muhammad, Tahir
    Zeng, Liang
    Gong, Jinlin
    AICHE JOURNAL, 2020, 66 (04)
  • [33] Sorption-enhanced hydrogen production: A review
    Harrison, Douglas P.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2008, 47 (17) : 6486 - 6501
  • [34] Tandem bed configuration for sorption-enhanced steam reforming of methane
    Reijers, H. Th J.
    Elzinga, G. D.
    Cobden, P. D.
    Haije, W. G.
    van den Brink, R. W.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2011, 5 (03) : 531 - 537
  • [35] Sorption-enhanced steam reforming of ethanol for continuous high-purity hydrogen production: 2D adsorptive reactor dynamics and process design
    Wu, Yi-Jiang
    Li, Ping
    Yu, Jian-Guo
    Cunha, Adelino F.
    Rodrigues, Alirio E.
    CHEMICAL ENGINEERING SCIENCE, 2014, 118 : 83 - 93
  • [36] Sorption-enhanced chemical looping oxidative steam reforming of methanol for on-board hydrogen supply
    Liang Zeng
    Di Wei
    Sam Toan
    Zhao Sun
    Zhiqiang Sun
    Green Energy & Environment, 2022, 7 (01) : 145 - 155
  • [37] Hydrogen production through CO2 sorption-enhanced methane steam reforming: Comparison between different adsorbents
    YuMing Chen
    YongChun Zhao
    JunYing Zhang
    ChuGuang Zheng
    Science China Technological Sciences, 2011, 54 : 2999 - 3008
  • [39] Application of multisection packing concept to sorption-enhanced steam methane reforming reaction for high-purity hydrogen production
    Lee, Chan Hyun
    Mun, Sungyong
    Lee, Ki Bong
    JOURNAL OF POWER SOURCES, 2015, 281 : 158 - 163
  • [40] Sorption-enhanced chemical looping oxidative steam reforming of methanol for on-board hydrogen supply
    Zeng, Liang
    Wei, Di
    Toan, Sam
    Sun, Zhao
    Sun, Zhiqiang
    GREEN ENERGY & ENVIRONMENT, 2022, 7 (01) : 145 - 155