On the Modeling of Continuous H2 Production by Sorption-Enhanced Steam Methane Reforming

被引:0
|
作者
Yan, Linbo [1 ]
Jia, Ziyue [1 ]
Liu, Yang [2 ,3 ]
Wang, Liang [4 ]
Shi, Jianye [4 ]
Qian, Mingyuan [4 ]
He, Boshu [1 ]
机构
[1] Beijing Jiaotong Univ, Inst Combust & Thermal Syst, Sch Mech Elect & Control Engn, Beijing 100044, Peoples R China
[2] China Univ Min & Technol, State Key Lab Geomech & Deep Underground Engn, Xuzhou 221116, Peoples R China
[3] Taiyuan Univ Technol, Coll Min Engn, Taiyuan 030024, Peoples R China
[4] Nucl Ind Engn Res & Design Co Ltd, Beijing 101300, Peoples R China
基金
中国国家自然科学基金;
关键词
dual fluidized bed reactor; sorption-enhanced; steam methane reforming; blue hydrogen; catalyst; WATER-GAS SHIFT; CATALYST; KINETICS; SORBENT; HYDROGEN; BIOGAS;
D O I
10.3390/catal15030246
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To continuously produce blue hydrogen from methane efficiently, a dual fluidized bed reactor was designed, and the corresponding kinetic model was built with the commercial Aspen Plus software v2006 and user-defined FORTRAN routine. To prove the reliability and accuracy of the kinetic model in this work, the model predictions were compared against reported experimental data from similar devices. Then, sensitivity analyses were implemented to fully investigate the characteristics of the designed reactor. The effects of reforming temperature (TREF), calcination temperature (TCAL), steam to carbon mole ratio (RS/C), calcium to carbon mole ratio (RC/C), catalyst to sorbent mass ratio (mC/S) and the residence time (tR) on the produced H2 dry mole fraction (FH2), CH4 conversion rate (CCH4), carbon capture rate (CCO2), and the reactor efficiency (ER) were comprehensively analyzed. It was found that, at the optimal operating conditions (TREF = 650 degrees C, RS/C = 5.0, RC/C = 3.0, tR = 60 s, and mC/S = 3.0), CCH4 can reach 96%, CCO2 can reach 77.4%, FH2 can reach 94.3%, and ER can reach 67% without heat recover.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Calcium-based pellets for continuous hydrogen production by sorption-enhanced steam methane reforming
    Wang, Nana
    Feng, Yuchuan
    Guo, Xin
    Ma, Suxia
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 49 : 897 - 909
  • [2] From sorption-enhanced reactor to sorption-enhanced membrane reactor: A step towards H2 production optimization through glycerol steam reforming
    Silva, Joel M.
    Ribeiro, Lucilia S.
    Orfao, J. J. M.
    Tosti, Silvano
    Soria, M. A.
    Madeira, Luis M.
    CHEMICAL ENGINEERING JOURNAL, 2019, 368 : 795 - 811
  • [3] Evaluation of the Effect of CaO on Hydrogen Production by Sorption-Enhanced Steam Methane Reforming
    Luo, Yun
    Chen, Juan
    Wang, Tao
    ACS OMEGA, 2024, 9 (05): : 5330 - 5337
  • [4] The effect of adsorbent characteristics on the performance of a continuous sorption-enhanced steam methane reforming process
    Koumpouras, Georgios C.
    Alpay, Esat
    Lapkin, Alexei
    Ding, Wong
    Stepanek, Frantisek
    CHEMICAL ENGINEERING SCIENCE, 2007, 62 (18-20) : 5632 - 5637
  • [5] SORPTION-ENHANCED STEAM REFORMING OF ETHANOL FOR HYDROGEN PRODUCTION
    Avendano, R.
    Dieuzeide, M. L.
    Bonelli, P.
    Amadeo, N.
    LATIN AMERICAN APPLIED RESEARCH, 2020, 50 (02) : 121 - 126
  • [6] Hydrogen production by sorption-enhanced steam reforming of glycerol
    Dou, Binlin
    Dupont, Valerie
    Rickett, Gavin
    Blakeman, Neil
    Williams, Paul T.
    Chen, Haisheng
    Ding, Yulong
    Ghadiri, Mojtaba
    BIORESOURCE TECHNOLOGY, 2009, 100 (14) : 3540 - 3547
  • [7] Tandem bed configuration for sorption-enhanced steam reforming of methane
    Reijers, H. Th J.
    Elzinga, G. D.
    Cobden, P. D.
    Haije, W. G.
    van den Brink, R. W.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2011, 5 (03) : 531 - 537
  • [8] Catalyst evaluation for high-purity H2 production by sorption-enhanced steam-methane reforming coupled to a Ca/Cu process
    Navarro, M. V.
    Lopez, J. M.
    Garcia, T.
    Grasa, G.
    Murillo, R.
    JOURNAL OF POWER SOURCES, 2017, 363 : 117 - 125
  • [9] Hydrotalcite as CO2 sorbent for sorption-enhanced steam reforming of methane
    Reijers, HTJ
    Valster-Schiermeier, SEA
    Cobden, PD
    van den Brink, RW
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2006, 45 (08) : 2522 - 2530
  • [10] Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review
    Barelli, L.
    Bidini, G.
    Gallorini, F.
    Servili, S.
    ENERGY, 2008, 33 (04) : 554 - 570