On the Modeling of Continuous H2 Production by Sorption-Enhanced Steam Methane Reforming

被引:0
|
作者
Yan, Linbo [1 ]
Jia, Ziyue [1 ]
Liu, Yang [2 ,3 ]
Wang, Liang [4 ]
Shi, Jianye [4 ]
Qian, Mingyuan [4 ]
He, Boshu [1 ]
机构
[1] Beijing Jiaotong Univ, Inst Combust & Thermal Syst, Sch Mech Elect & Control Engn, Beijing 100044, Peoples R China
[2] China Univ Min & Technol, State Key Lab Geomech & Deep Underground Engn, Xuzhou 221116, Peoples R China
[3] Taiyuan Univ Technol, Coll Min Engn, Taiyuan 030024, Peoples R China
[4] Nucl Ind Engn Res & Design Co Ltd, Beijing 101300, Peoples R China
基金
中国国家自然科学基金;
关键词
dual fluidized bed reactor; sorption-enhanced; steam methane reforming; blue hydrogen; catalyst; WATER-GAS SHIFT; CATALYST; KINETICS; SORBENT; HYDROGEN; BIOGAS;
D O I
10.3390/catal15030246
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To continuously produce blue hydrogen from methane efficiently, a dual fluidized bed reactor was designed, and the corresponding kinetic model was built with the commercial Aspen Plus software v2006 and user-defined FORTRAN routine. To prove the reliability and accuracy of the kinetic model in this work, the model predictions were compared against reported experimental data from similar devices. Then, sensitivity analyses were implemented to fully investigate the characteristics of the designed reactor. The effects of reforming temperature (TREF), calcination temperature (TCAL), steam to carbon mole ratio (RS/C), calcium to carbon mole ratio (RC/C), catalyst to sorbent mass ratio (mC/S) and the residence time (tR) on the produced H2 dry mole fraction (FH2), CH4 conversion rate (CCH4), carbon capture rate (CCO2), and the reactor efficiency (ER) were comprehensively analyzed. It was found that, at the optimal operating conditions (TREF = 650 degrees C, RS/C = 5.0, RC/C = 3.0, tR = 60 s, and mC/S = 3.0), CCH4 can reach 96%, CCO2 can reach 77.4%, FH2 can reach 94.3%, and ER can reach 67% without heat recover.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Thermodynamic analysis of H2 production from CaO sorption-enhanced methane steam reforming thermally coupled with chemical looping combustion as a novel technology
    Zhu, Lin
    Fan, Junming
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2015, 39 (03) : 356 - 369
  • [12] Comparative techno-economic analysis for steam methane reforming in a sorption-enhanced membrane reactor: Simultaneous H2 production and CO2 capture
    Lee, Hyunjun
    Lee, Boreum
    Byun, Manhee
    Lim, Hankwon
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2021, 171 : 383 - 394
  • [13] Continuous sorption-enhanced steam reforming of glycerol to high-purity hydrogen production
    Dou, Binlin
    Wang, Chao
    Chen, Haisheng
    Song, Yongchen
    Xie, Baozheng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (27) : 11902 - 11909
  • [14] Dynamic model and performance of an integrated sorption-enhanced steam methane reforming process with separators for the simultaneous blue H2 production and CO2 capture
    Nguyen Dat Vo
    Kang, Jun-Ho
    Oh, Min
    Lee, Chang-Ha
    CHEMICAL ENGINEERING JOURNAL, 2021, 423 (423)
  • [15] Kinetics analysis and process simulation for sorption-enhanced steam methane reforming
    Chen, Hengzhi
    Liu, Jing
    Guo, Zhengkui
    ADVANCES IN CHEMICAL ENGINEERING II, PTS 1-4, 2012, 550-553 : 2633 - 2637
  • [16] Modeling of hydrogen production by sorption enhanced methane steam reforming reactions
    Key Laboratory for Thermal Science and Power Engineering, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2008, 36 (01): : 99 - 103
  • [17] Efficiency analysis of sorption-enhanced method in steam methane reforming process
    Hu, Yaowei
    Liu, Lu
    Xu, Kai
    Song, Yuncai
    Jing, Jieying
    Zhang, Huiyan
    Feng, Jie
    CARBON RESOURCES CONVERSION, 2023, 6 (02) : 132 - 141
  • [18] Optimisation of a sorption-enhanced chemical looping steam methane reforming process
    Powell, Jon
    Wongsakulphasatch, Suwimol
    Kokoo, Rungrote
    Noppakun, Nichamon
    Prapainainar, Chaiwat
    Aziz, M. A. A.
    Assabumrungrat, Suttichai
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2021, 173 : 183 - 192
  • [19] Approaching Sustainable H2 Production: Sorption Enhanced Steam Reforming of Ethanol
    He, Li
    Berntsen, Helene
    Chen, De
    JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (11): : 3834 - 3844
  • [20] Modelling of H2 production in a packed bed reactor via sorption enhanced steam methane reforming process
    Abbas, S. Z.
    Dupont, V.
    Mahmud, T.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (30) : 18910 - 18921