A New Integrated Approach for Landslide Data Balancing and Spatial Prediction Based on Generative Adversarial Networks (GAN)

被引:34
|
作者
Al-Najjar, Husam A. H. [1 ]
Pradhan, Biswajeet [1 ,2 ]
Sarkar, Raju [3 ]
Beydoun, Ghassan [1 ]
Alamri, Abdullah [4 ]
机构
[1] Univ Technol Sydney, Fac Engn & IT, Ctr Adv Modelling & Geospatial Informat Syst CAMG, Sydney, NSW 2007, Australia
[2] Univ Kebangsaan Malaysia, UKM, Earth Observat Ctr, Inst Climate Change, Bangi 43600, Selangor, Malaysia
[3] Delhi Technol Univ, Dept Civil Engn, Bawana Rd, Delhi 110042, India
[4] King Saud Univ, Dept Geol & Geophys, Coll Sci, POB 2455, Riyadh 11451, Saudi Arabia
关键词
landslide susceptibility; imbalanced dataset; machine learning; generative adversarial network; GIS; remote sensing; Bhutan; SUSCEPTIBILITY ASSESSMENT; MOUNTAINS; MODEL; AREA;
D O I
10.3390/rs13194011
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Landslide susceptibility mapping has significantly progressed with improvements in machine learning techniques. However, the inventory/data imbalance (DI) problem remains one of the challenges in this domain. This problem exists as a good quality landslide inventory map, including a complete record of historical data, is difficult or expensive to collect. As such, this can considerably affect one's ability to obtain a sufficient inventory or representative samples. This research developed a new approach based on generative adversarial networks (GAN) to correct imbalanced landslide datasets. The proposed method was tested at Chukha Dzongkhag, Bhutan, one of the most frequent landslide prone areas in the Himalayan region. The proposed approach was then compared with the standard methods such as the synthetic minority oversampling technique (SMOTE), dense imbalanced sampling, and sparse sampling (i.e., producing non-landslide samples as many as landslide samples). The comparisons were based on five machine learning models, including artificial neural networks (ANN), random forests (RF), decision trees (DT), k-nearest neighbours (kNN), and the support vector machine (SVM). The model evaluation was carried out based on overall accuracy (OA), Kappa Index, F1-score, and area under receiver operating characteristic curves (AUROC). The spatial database was established with a total of 269 landslides and 10 conditioning factors, including altitude, slope, aspect, total curvature, slope length, lithology, distance from the road, distance from the stream, topographic wetness index (TWI), and sediment transport index (STI). The findings of this study have shown that both GAN and SMOTE data balancing approaches have helped to improve the accuracy of machine learning models. According to AUROC, the GAN method was able to boost the models by reaching the maximum accuracy of ANN (0.918), RF (0.933), DT (0.927), kNN (0.878), and SVM (0.907) when default parameters used. With the optimum parameters, all models performed best with GAN at their highest accuracy of ANN (0.927), RF (0.943), DT (0.923) and kNN (0.889), except SVM obtained the highest accuracy of (0.906) with SMOTE. Our finding suggests that RF balanced with GAN can provide the most reasonable criterion for landslide prediction. This research indicates that landslide data balancing may substantially affect the predictive capabilities of machine learning models. Therefore, the issue of DI in the spatial prediction of landslides should not be ignored. Future studies could explore other generative models for landslide data balancing. By using state-of-the-art GAN, the proposed model can be considered in the areas where the data are limited or imbalanced.
引用
收藏
页数:30
相关论文
共 50 条
  • [21] Spatial landslide susceptibility assessment using machine learning techniques assisted by additional data created with generative adversarial networks
    Husam A.H.Al-Najjar
    Biswajeet Pradhan
    Geoscience Frontiers, 2021, 12 (02) : 625 - 637
  • [22] A Generative Adversarial Networks Based Approach for Literary Translation
    Gong, Fangming
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2023, 30 (03): : 921 - 929
  • [23] Biosignal Data Augmentation Based on Generative Adversarial Networks
    Harada, Shota
    Hayashi, Hideaki
    Uchida, Seiichi
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 368 - 371
  • [24] Attention Based Data Hiding with Generative Adversarial Networks
    Yu, Chong
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 1120 - 1128
  • [25] Distance Correlation GAN: Fair Tabular Data Generation with Generative Adversarial Networks
    Rajabi, Amirarsalan
    Garibay, Ozlem Ozmen
    ARTIFICIAL INTELLIGENCE IN HCI, AI-HCI 2023, PT I, 2023, 14050 : 431 - 445
  • [26] Credit default swap prediction based on generative adversarial networks
    Lin, Shu-Ying
    Liu, Duen-Ren
    Huang, Hsien-Pin
    DATA TECHNOLOGIES AND APPLICATIONS, 2022, 56 (05) : 720 - 740
  • [27] AN ACCURATE SALIENCY PREDICTION METHOD BASED ON GENERATIVE ADVERSARIAL NETWORKS
    Yan, Bing
    Wang, Haoqian
    Wang, Xingzheng
    Zhang, Yongbing
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 2339 - 2343
  • [28] Anomaly prediction of Internet behavior based on generative adversarial networks
    Wang, XiuQing
    An, Yang
    Hu, Qianwei
    PeerJ Computer Science, 2024, 10
  • [29] Anomaly prediction of Internet behavior based on generative adversarial networks
    Wang, Xiuqing
    An, Yang
    Hu, Qianwei
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [30] A clustering and generative adversarial networks-based hybrid approach for imbalanced data classification
    Ding H.
    Cui X.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (06) : 8003 - 8018