Anomaly prediction of Internet behavior based on generative adversarial networks

被引:0
|
作者
Wang, Xiuqing [1 ,2 ,3 ]
An, Yang [1 ]
Hu, Qianwei [1 ]
机构
[1] Hebei Normal Univ, Coll Comp & Cyber Secur, Shijiazhuang, Hebei, Peoples R China
[2] Coll Comp & Cyber Secur, Hebei Prov Key Lab Network & Informat Secur, Shijiazhuang, Hebei, Peoples R China
[3] Hebei Normal Univ, Hebei Prov Engn Res Ctr Supply Chain Big Data Anal, Shijiazhuang, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Anomaly prediction; Generative adversarial networks; Internet behaviors; Deep learning;
D O I
10.7717/peerj-cs.2009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the popularity of Internet applications, a large amount of Internet behavior log data is generated. Abnormal behaviors of corporate employees may lead to internet security issues and data leakage incidents. To ensure the safety of information systems, it is important to research on anomaly prediction of Internet behaviors. Due to the high cost of labeling big data manually, an unsupervised generative model-Anomaly Prediction of Internet behavior based on Generative Adversarial Networks (APIBGAN), which works only with a small amount of labeled data, is proposed to predict anomalies of Internet behaviors. After the input Internet behavior data is preprocessed by the proposed method, the data-generating generative adversarial network (DGGAN) in APIBGAN learns the distribution of real Internet behavior data by leveraging neural networks' powerful feature extraction from the data to generate Internet behavior data with random noise. The APIBGAN utilizes these labeled generated data as a benchmark to complete the distance-based anomaly prediction. Three categories of Internet behavior sampling data from corporate employees are employed to train APIBGAN: (1) Online behavior data of an individual in a department. (2) Online behavior data of multiple employees in the same department. (3) Online behavior data of multiple employees in different departments. The prediction scores of the three categories of Internet behavior data are 87.23%, 85.13%, and 83.47%, respectively, and are above the highest score of 81.35% which is obtained by the comparison method based on Isolation Forests in the CCF Big Data & Computing Intelligence Contest (CCF-BDCI). The experimental results validate that APIBGAN predicts the outlier of Internet behaviors effectively through the GAN, which is composed of a simple three- layer fully connected neural networks (FNNs). We can use APIBGAN not only for anomaly prediction of Internet behaviors but also for anomaly prediction in many other applications, which have big data infeasible to label manually. Above all, APIBGAN has broad application prospects for anomaly prediction, and our work also provides valuable input for anomaly prediction-based GAN.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Anomaly prediction of Internet behavior based on generative adversarial networks
    Wang, XiuQing
    An, Yang
    Hu, Qianwei
    PeerJ Computer Science, 2024, 10
  • [2] APIB-GAN: A generative adversarial networks based approach for anomaly prediction of internet behavior
    Fang, Yetong
    PHYSICAL COMMUNICATION, 2024, 64
  • [3] Anomaly detection using deep convolutional generative adversarial networks in the internet of things
    Mishra, Amit Kumar
    Paliwal, Shweta
    Srivastava, Gautam
    ISA TRANSACTIONS, 2024, 145 : 493 - 504
  • [4] Video anomaly detection based on ensemble generative adversarial networks
    Gu Jia-Cheng
    Long Ying-Wen
    Ji Ming-Ming
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2022, 37 (12) : 1607 - 1613
  • [5] A Generative Adversarial Networks for Log Anomaly Detection
    Duan, Xiaoyu
    Ying, Shi
    Yuan, Wanli
    Cheng, Hailong
    Yin, Xiang
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2021, 37 (01): : 135 - 148
  • [6] Image Anomaly Detection with Generative Adversarial Networks
    Deecke, Lucas
    Vandermeulen, Robert
    Ruff, Lukas
    Mandt, Stephan
    Kloft, Marius
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2018, PT I, 2019, 11051 : 3 - 17
  • [7] Least Squares Generative Adversarial Networks-Based Anomaly Detection
    Lee, Chang-Ki
    Cheon, Yu-Jeong
    Hwang, Wook-Yeon
    IEEE ACCESS, 2022, 10 : 26920 - 26930
  • [8] Generative Adversarial Networks for Failure Prediction
    Zheng, Shuai
    Farahat, Ahmed
    Gupta, Chetan
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT III, 2020, 11908 : 621 - 637
  • [9] AN ACCURATE SALIENCY PREDICTION METHOD BASED ON GENERATIVE ADVERSARIAL NETWORKS
    Yan, Bing
    Wang, Haoqian
    Wang, Xingzheng
    Zhang, Yongbing
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 2339 - 2343
  • [10] Credit default swap prediction based on generative adversarial networks
    Lin, Shu-Ying
    Liu, Duen-Ren
    Huang, Hsien-Pin
    DATA TECHNOLOGIES AND APPLICATIONS, 2022, 56 (05) : 720 - 740