Artificial neural network analysis of factors controling ecosystem metabolism in coastal systems

被引:14
|
作者
Rochelle-Newall, Emnia. J. [1 ]
Winter, Christian
Barron, Cristina
Borges, Alberto V.
Duarte, Carlos M.
Elliott, Mike
Frankignoulle, Michel
Gazeau, Fred
Middelburg, Jack J.
Pizay, Marie-Dominique
Gattuso, Jean-Pierre
机构
[1] Ctr IRD, Inst Rech Dev, UR 103, BP A5, NC-98848 Noumea, New Caledonia
[2] Univ Paris 06, Oceanog Lab, UMR 7093, F-06234 Villefranche Sur Mer, France
[3] Ctr Natl Rech Sci, UMR 7093, F-06234 Villefranche Sur Mer, France
[4] Univ Islas Baleares, Inst Mediterraneo Estudios Avanzados, Consejo Super Invest Cientif, CSIC,Grp Oceanog Interdisciplinar, Esporles, Spain
[5] Univ Liege, Interfac Ctr Marine Res, Unite Oceanog Chim, Liege, Belgium
[6] Univ Hull, Inst Estuarine & Coastal Studies, Kingston Upon Hull, N Humberside, England
[7] Netherlands Inst Ecol, Koninklijke Nederlandse Akad, Ctr Estuarine & Marine Ecol, NL-4400 NT Yerseke, Netherlands
关键词
artificial neural networks; coastal ecosystems; metabolic balance; primary production; respiration;
D O I
10.1890/05-1769.1
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Knowing the metabolic balance of an ecosystem is of utmost importance in determining whether the system is a net source or net sink of carbon dioxide to the atmosphere. However, obtaining these estimates often demands significant amounts of time and manpower. Here we present a simplified way to obtain an estimation of ecosystem metabolism. We used artificial neural networks (ANNs) to develop a mathematical model of the gross primary production to community respiration ratio (GPP:CR) based on input variables derived from three widely contrasting European coastal ecosystems (Scheldt Estuary, Randers Fjord, and Bay of Palma). Although very large gradients of nutrient concentration, light penetration, and organic-matter concentration exist across the sites, the factors that best predict the GPP:CR ratio are sampling depth, dissolved organic carbon (DOC) concentration, and temperature. We propose that, at least in coastal ecosystems, metabolic balance can be predicted relatively easily from these three predictive factors. An important conclusion of this work is that ANNs can provide a robust tool for the determination of ecosystem metabolism in coastal ecosystems.
引用
收藏
页码:S185 / S196
页数:12
相关论文
共 50 条
  • [42] Artificial neural network application for multi-ecosystem carbon flux simulation
    Melesse, AM
    Hanley, RS
    ECOLOGICAL MODELLING, 2005, 189 (3-4) : 305 - 314
  • [43] Spatialization of station measured net ecosystem exchange using artificial neural network
    Shi, Run-He
    Zhu, Xu-Dong
    Zhang, Hui-Fang
    PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2008, : 1430 - +
  • [44] Analysis of Artificial Neural Network Architectures for Modeling Smart Lighting Systems for Energy Savings
    Garces-Jimenez, Alberto
    Luis Castillo-Sequera, Jose
    Del Corte-Valiente, Antonio
    Manuel Gomez-Pulido, Josi
    Dominguez Gonzalez-Seco, Esteban Patricio
    IEEE ACCESS, 2019, 7 : 119881 - 119891
  • [45] Analysis of artificial neural network architectures to model smart lighting systems for saving energy
    Garcés-Jiménez, Alberto
    Castillo-Sequera, José Luis
    Corte-Valiente, Antonio Del
    Gómez-Pulido, José Manuel
    González-Seco, Esteban Patricio Domínguez
    IEEE Access, 2019, 7 : 1 - 10
  • [46] Application Model of Modern Artificial Neural Network Methods for the Analysis of Information Systems Security
    Demidov, R. A. Z.
    Pechenkin, A. I.
    Zegzhda, P. D.
    Kalinin, M. O.
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2018, 52 (08) : 965 - 970
  • [47] Analysis and prediction of the penetration of renewable energy in power systems using artificial neural network
    Han, Yixiao
    Liao, Yanfen
    Ma, Xiaoqian
    Guo, Xing
    Li, Changxin
    Liu, Xinyu
    RENEWABLE ENERGY, 2023, 215
  • [48] Artificial Neural Network-based Small Signal Stability Analysis of Power Systems
    Pepiciello, Antonio
    Vaccaro, Alfredo
    2021 IEEE MADRID POWERTECH, 2021,
  • [49] A dual model/artificial neural network framework for privacy analysis in traffic monitoring systems
    Canepa, Edward S.
    Claudel, Christian G.
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2019, 105 : 126 - 144
  • [50] Identifying characteristic chlorophyll a profiles in the coastal domain using an artificial neural network
    Richardson, AJ
    Pfaff, MC
    Field, JG
    Silulwane, NF
    Shillington, FA
    JOURNAL OF PLANKTON RESEARCH, 2002, 24 (12) : 1289 - 1303