A probabilistic model for fire detection with applications

被引:16
|
作者
Joglar, F
Mowrer, F
Modarres, M [1 ]
机构
[1] Univ Maryland, AJ Clark Sch Engn, Ctr Technol Risk Studies, College Pk, MD 20742 USA
[2] Univ Maryland, Fire Protect Dept Engn Dept, College Pk, MD 20742 USA
关键词
fire detection; probabilistic risk assessment; uncertainty analysis; detector response;
D O I
10.1007/s10694-005-1268-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A probabilistic model for estimating the activation time of ceiling-mounted fire detection devices is described. The probabilistic model builds on the deterministic model, DETACT, by introducing probability distribution functions in place of point estimates for the parameters governing fire detector response, including the fire heat release rate history, the detector activation temperature, response time index and conductance parameter and the location of the device. The probabilistic model incorporates only parameter uncertainty. Model uncertainties associated with the deterministic model for estimating the activation time of ceiling mounted fire detectors have not been addressed. An example application of the probabilistic model is discussed. The probabilistic results provide valuable insights about the relevant parameters involved in a time to detection analysis.
引用
收藏
页码:151 / 172
页数:22
相关论文
共 50 条
  • [31] Microstrip array antenna for fire-detection applications
    Vincetti, L.
    Polemi, A.
    Zoboli, M.
    2007 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, VOLS 1-12, 2007, : 1945 - 1948
  • [32] PPN :A Probabilistic Model for Fault Detection and Diagnosis
    She, Wei
    Ye, Yangdong
    2012 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA), 2012, : 1006 - 1011
  • [33] Genetic programming with Probabilistic Model for fault detection
    Chen, DY
    Zhou, YQ
    Li, TS
    PROCEEDINGS OF THE 11TH JOINT INTERNATIONAL COMPUTER CONFERENCE, 2005, : 434 - 437
  • [34] Probabilistic model for sensor fault detection and identification
    Mehranbod, N
    Soroush, M
    Piovoso, M
    Ogunnaike, BA
    AICHE JOURNAL, 2003, 49 (07) : 1787 - 1802
  • [35] A Hierarchical Probabilistic Model for Facial Feature Detection
    Wu, Yue
    Wang, Ziheng
    Ji, Qiang
    2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 1781 - 1788
  • [36] A probabilistic model of overhead transmission line outage due to forest fire
    Song, Jiajing
    Guo, Chuangxin
    Zhang, Jinjiang
    Wang, Yue
    Sheng, Kun
    Dianwang Jishu/Power System Technology, 2013, 37 (01): : 100 - 105
  • [37] A PROBABILISTIC MODEL FOR FLOOD DETECTION IN VIDEO SEQUENCES
    Koerich Borges, Paulo Vinicius
    Mayer, Joceli
    Izquierdo, Ebroul
    2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 13 - 16
  • [38] Probabilistic Model Checking for AMI Intrusion Detection
    Ali, Muhammad Qasim
    Al-Shaer, Ehab
    2013 IEEE INTERNATIONAL CONFERENCE ON SMART GRID COMMUNICATIONS (SMARTGRIDCOMM), 2013, : 468 - 473
  • [39] Probabilistic calibration of a coupled ecosystem and fire model using satellite data
    Gomez-Dans, J. L.
    Wooster, M.
    Lewis, P.
    Spessa, A.
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 2461 - +
  • [40] A probabilistic neural network model for lameness detection
    Pastell, M. E.
    Kujala, M.
    JOURNAL OF DAIRY SCIENCE, 2007, 90 (05) : 2283 - 2292