A probabilistic model for fire detection with applications

被引:16
|
作者
Joglar, F
Mowrer, F
Modarres, M [1 ]
机构
[1] Univ Maryland, AJ Clark Sch Engn, Ctr Technol Risk Studies, College Pk, MD 20742 USA
[2] Univ Maryland, Fire Protect Dept Engn Dept, College Pk, MD 20742 USA
关键词
fire detection; probabilistic risk assessment; uncertainty analysis; detector response;
D O I
10.1007/s10694-005-1268-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A probabilistic model for estimating the activation time of ceiling-mounted fire detection devices is described. The probabilistic model builds on the deterministic model, DETACT, by introducing probability distribution functions in place of point estimates for the parameters governing fire detector response, including the fire heat release rate history, the detector activation temperature, response time index and conductance parameter and the location of the device. The probabilistic model incorporates only parameter uncertainty. Model uncertainties associated with the deterministic model for estimating the activation time of ceiling mounted fire detectors have not been addressed. An example application of the probabilistic model is discussed. The probabilistic results provide valuable insights about the relevant parameters involved in a time to detection analysis.
引用
收藏
页码:151 / 172
页数:22
相关论文
共 50 条
  • [21] Early Warning Fire Detection System Using a Probabilistic Neural Network
    Susan L. Rose-Pehrsson
    Sean J. Hart
    Thomas T. Street
    Frederick W. Williams
    Mark H. Hammond
    Daniel T. Gottuk
    Mark T. Wright
    Jennifer T. Wong
    Fire Technology, 2003, 39 : 147 - 171
  • [22] Formal Probabilistic Analysis of a Wireless Sensor Network for Forest Fire Detection
    Elleuch, Maissa
    Tahar, Sofiene
    Hasan, Osman
    Abid, Mohamed
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2013, (122): : 1 - 9
  • [23] Data-driven probabilistic quantification and assessment of the prediction error model in damage detection applications
    Silionis, Nicholas E.
    Anyfantis, Konstantinos N.
    PROBABILISTIC ENGINEERING MECHANICS, 2023, 71
  • [24] A generative probabilistic OCR model for NLP applications
    Kolak, O
    Byrne, W
    Resnik, P
    HLT-NAACL 2003: HUMAN LANGUAGE TECHNOLOGY CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE MAIN CONFERENCE, 2003, : 134 - 141
  • [25] Probabilistic Fire Simulation Assessment Using Simplified Model and Zone Modelling of a Kitchen Fire Scenario
    Iffah Umairah Zulmajdi
    Mohd Zahirasri Mohd Tohir
    S. Syafiie
    Fire Technology, 2022, 58 : 3007 - 3037
  • [26] Probabilistic Fire Simulation Assessment Using Simplified Model and Zone Modelling of a Kitchen Fire Scenario
    Zulmajdi, Iffah Umairah
    Tohir, Mohd Zahirasri Mohd
    Syafiie, S.
    FIRE TECHNOLOGY, 2022, 58 (05) : 3007 - 3037
  • [27] Experimental study of video fire detection and its applications
    Wong, Arthur K. K.
    Fong, N. K.
    2013 INTERNATIONAL CONFERENCE ON PERFORMANCE-BASED FIRE AND FIRE PROTECTION ENGINEERING (ICPFFPE 2013), 2014, 71 : 316 - 327
  • [28] Parameter-supported fire detection in industrial applications
    Jock, Rolf
    Technische Uberwachung, 2009, 50 (10): : 32 - 33
  • [29] Microstrip array antenna for fire-detection applications
    Vincetti, L.
    Polemi, A.
    Zoboli, M.
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2007, 49 (09) : 2279 - 2282
  • [30] Probabilistic model for safe evacuation under the effect of uncertain factors in fire
    Zhang Guowei
    Huang Di
    Zhu Guoqing
    Yuan Guanglin
    SAFETY SCIENCE, 2017, 93 : 222 - 229