Improved fatigue properties of 316L stainless steel using glass-forming coatings

被引:0
|
作者
Liu, FX [1 ]
Chiang, CL [1 ]
Wu, L [1 ]
Hsieh, YY [1 ]
Yuan, W [1 ]
Chu, JP [1 ]
Liaw, PK [1 ]
Brooks, CR [1 ]
Buchanan, RA [1 ]
机构
[1] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
关键词
D O I
暂无
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The effects of the glass-forming coatings on the fatigue behavior of 316L stainless steel were investigated. Films consisting of 47%Zr, 31%Cu, 13%Al and 9%Ni (atomic percent) were deposited onto the stainless steel by magnetron sputtering. The influences of the substrate condition, the surface roughness, the adhesion, and the compressive residual stresses on the fatigue behavior were studied. The applications of the glass-forming coating gave rise to significant improvements in both the fatigue life and the fatigue limit, in comparison with the uncoated steel. Depending on the maximum stress applied to the steel, the fatigue life can be increased by at least 30 times, and the fatigue limit can be elevated by 30%.
引用
收藏
页码:131 / 136
页数:6
相关论文
共 50 条
  • [21] Short fatigue crack behaviour in 316L stainless steel
    Obrtlik, K
    Polak, J
    Hajek, M
    Vasek, A
    INTERNATIONAL JOURNAL OF FATIGUE, 1997, 19 (06) : 471 - 475
  • [23] Structural, mechanical and tribological properties of Ti and TiN coatings on 316L stainless steel
    Yazici, M.
    Kovaci, H.
    Yetim, A. F.
    Celik, A.
    CERAMICS INTERNATIONAL, 2018, 44 (12) : 14195 - 14201
  • [24] The permeation of tritium through 316L stainless steel with multiple coatings
    Yao, ZY
    Hao, JK
    Zhou, CS
    Shan, CQ
    Yu, JN
    JOURNAL OF NUCLEAR MATERIALS, 2000, 283 : 1287 - 1291
  • [25] Low and high cycle fatigue interaction in 316L stainless steel
    Wong, YK
    Hu, XZ
    Norton, MP
    JOURNAL OF TESTING AND EVALUATION, 2001, 29 (02) : 138 - 145
  • [26] Fatigue strength of additively manufactured 316L austenitic stainless steel
    Kumar, Punit
    Jayaraj, R.
    Suryawanshi, J.
    Satwik, U. R.
    McKinnell, J.
    Ramamurty, U.
    ACTA MATERIALIA, 2020, 199 (199) : 225 - 239
  • [27] Fatigue Response of Additive-Manufactured 316L Stainless Steel
    Chepkoech, Melody
    Omoniyi, Peter
    Owolabi, Gbadebo
    METALS, 2024, 14 (09)
  • [28] Fatigue crack initiation and crystallographic growth in 316L stainless steel
    Sistaninia, M.
    Niffenegger, M.
    INTERNATIONAL JOURNAL OF FATIGUE, 2015, 70 : 163 - 170
  • [29] FATIGUE BEHAVIOUR OF COPPER-BRAZED 316L STAINLESS STEEL
    Kralj, Jernej
    Hanzelic, Blaz
    Glodez, Sreko
    Kramberger, Janez
    Satosek, Roman
    Necemer, Branko
    MATERIALI IN TEHNOLOGIJE, 2024, 58 (03): : 433 - 440
  • [30] Gelcasting of 316L stainless steel
    Li, Yan
    Guo, Zhimeng
    Hao, Junjie
    JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING, 2007, 14 (06): : 507 - 511