Globally maximal arithmetic groups

被引:13
|
作者
Gross, BH
Nebe, G [1 ]
机构
[1] Univ Ulm, Abt Reine Math, D-89069 Ulm, Germany
[2] Harvard Univ, Dept Math, Cambridge, MA 01238 USA
关键词
D O I
10.1016/j.jalgebra.2003.09.033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:625 / 642
页数:18
相关论文
共 50 条
  • [11] CLASSIFICATION OF THE MAXIMAL ARITHMETIC SUBGROUPS OF INDEFINITE ORTHOGONAL GROUPS OF TYPE (BL)
    BONDARENKO, AA
    MATHEMATICS OF THE USSR-SBORNIK, 1985, 127 (1-2): : 71 - 89
  • [12] THE ARITHMETIC OF MAXIMAL PLANES
    KRISHNAMURTI, R
    ENVIRONMENT AND PLANNING B-PLANNING & DESIGN, 1992, 19 (04): : 431 - 464
  • [13] Arithmetic of arithmetic Coxeter groups
    Milea, Suzana
    Shelley, Christopher D.
    Weissman, Martin H.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (02) : 442 - 449
  • [14] On the maximal length of arithmetic progressions
    Zhao, Minzhi
    Zhang, Huizeng
    ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 : 1 - 21
  • [15] Counting maximal arithmetic subgroups
    Belolipetsky, Mikhail
    Ellenberg, Jordan
    Venkatesh, Akshay
    DUKE MATHEMATICAL JOURNAL, 2007, 140 (01) : 1 - 33
  • [16] Maximal collections of intersecting arithmetic progressions
    Ford, K
    COMBINATORICA, 2003, 23 (02) : 263 - 281
  • [17] Maximal arithmetic progressions in random subsets
    Benjamini, Itai
    Yadin, Ariel
    Zeitouni, Ofer
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2007, 12 : 365 - 376
  • [18] MAXIMAL SETS AND FRAGMENTS OF PEANO ARITHMETIC
    CHONG, CT
    NAGOYA MATHEMATICAL JOURNAL, 1989, 115 : 165 - 183
  • [19] Maximal Collections of Intersecting Arithmetic Progressions
    Kevin Ford*
    Combinatorica, 2003, 23 : 263 - 281
  • [20] THE MAXIMAL ORDER OF CERTAIN ARITHMETIC FUNCTIONS
    SITARAMAIAH, V
    SUBBARAO, MV
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1993, 24 (06): : 347 - 355