Accelerating Gradient Descent with Projective Response Surface Methodology

被引:3
|
作者
Senov, Alexander [1 ]
机构
[1] St Petersburg State Univ, Fac Math & Mech, Univ Sky Prospekt 28, St Petersburg 198504, Russia
基金
俄罗斯科学基金会;
关键词
Least-squares; Steepest descent; Quadratic programming; Projective methods;
D O I
10.1007/978-3-319-69404-7_34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a new modification of gradient descent algorithm based on surrogate optimization with projection into low-dimensional space. It consequently builds an approximation of the target function in low-dimensional space and takes the approximation optimum point mapped back to original parameter space as the next parameter estimate. An additional projection step is used to fight the curse of dimensionality. Major advantage of the proposed modification is that it does not change gradient descent iterations, thus it may be used with almost any zero- or first-order iterative method. We give a theoretical motivation for the proposed algorithm and experimentally illustrate its properties on modelled data.
引用
收藏
页码:376 / 382
页数:7
相关论文
共 50 条
  • [31] Accelerating Coordinate Descent in Iterative Reconstruction
    Hsieh, Scott S.
    Hoffman, John M.
    Noo, Frederic
    [J]. MEDICAL IMAGING 2019: PHYSICS OF MEDICAL IMAGING, 2019, 10948
  • [32] RESPONSE SURFACE METHODOLOGY - REVISITED
    HENIKA, RG
    PALMER, GM
    [J]. CEREAL FOODS WORLD, 1976, 21 (08) : 432 - 432
  • [33] Response Surface Methodology in Biotechnology
    Steinberg, David M.
    Bursztyn, Dizza
    [J]. QUALITY ENGINEERING, 2010, 22 (02) : 78 - 87
  • [34] RESPONSE SURFACE METHODOLOGY - PREFACE
    WILLIGES, RC
    [J]. HUMAN FACTORS, 1973, 15 (04) : 293 - 293
  • [35] BRDF modeling and optimization of a target surface based on the gradient descent algorithm
    Li, Yanhui
    Yang, Pengfei
    Bai, Lu
    Zhang, Zifei
    [J]. APPLIED OPTICS, 2023, 62 (36) : 9486 - 9492
  • [36] RESPONSE-SURFACE METHODOLOGY
    CHROMEY, FC
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1982, 184 (SEP): : 38 - INDE
  • [37] Response surface methodology revisited
    Angüm, E
    Kleijnen, JPC
    Hertog, DD
    Gürkan, G
    [J]. PROCEEDINGS OF THE 2002 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2002, : 377 - 383
  • [38] Accelerating Greedy Coordinate Descent Methods
    Lu, Haihao
    Freund, Robert M.
    Mirrokni, Vahab
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [39] Stochastic Gradient Descent Optimization Model for Demand Response in a Connected Microgrid
    Sivanantham, Geetha
    Gopalakrishnan, Srivatsun
    [J]. KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2022, 16 (01): : 97 - 115
  • [40] ON THE METHODOLOGY OF PROJECTIVE TESTING
    SUTCLIFFE, JP
    [J]. AUSTRALIAN JOURNAL OF PSYCHOLOGY, 1956, 8 (02) : 180 - 185