Accelerating Greedy Coordinate Descent Methods

被引:0
|
作者
Lu, Haihao [1 ,2 ]
Freund, Robert M. [3 ]
Mirrokni, Vahab [4 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] MIT, Operat Res Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] MIT, Sloan Sch Management, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] Google Res, New York, NY USA
关键词
CONVERGENCE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce and study two algorithms to accelerate greedy coordinate descent in theory and in practice: Accelerated Semi-Greedy Coordinate Descent (ASCD) and Accelerated Greedy Co-ordinate Descent (AGCD). On the theory side, our main results are for ASCD: we show that ASCD achieves O(1/k(2)) convergence, and it also achieves accelerated linear convergence for strongly convex functions. On the empirical side, while both AGCD and ASCD outperform Accelerated Randomized Coordinate Descent on most instances in our numerical experiments, we note that AGCD significantly outperforms the other two methods in our experiments, in spite of a lack of theoretical guarantees for this method. To complement this empirical finding for AGCD, we present an explanation why standard proof techniques for acceleration cannot work for AGCD, and we introduce a technical condition under which AGCD is guaranteed to have accelerated convergence. Finally, we confirm that this technical condition holds in our numerical experiments.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Accelerating block coordinate descent methods with identification strategies
    Lopes, R.
    Santos, S. A.
    Silva, P. J. S.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2019, 72 (03) : 609 - 640
  • [2] Accelerating block coordinate descent methods with identification strategies
    R. Lopes
    S. A. Santos
    P. J. S. Silva
    [J]. Computational Optimization and Applications, 2019, 72 : 609 - 640
  • [3] Asynchronous Parallel Greedy Coordinate Descent
    You, Yang
    Lian, XiangRu
    Liu, Ji
    Yu, Hsiang-Fu
    Dhillon, Inderjit S.
    Demmel, James
    Hsieh, Cho-Jui
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [4] Accelerating Coordinate Descent in Iterative Reconstruction
    Hsieh, Scott S.
    Hoffman, John M.
    Noo, Frederic
    [J]. MEDICAL IMAGING 2019: PHYSICS OF MEDICAL IMAGING, 2019, 10948
  • [5] Efficient Greedy Coordinate Descent for Composite Problems
    Karimireddy, Sai Praneeth
    Koloskova, Anastasia
    Stich, Sebastian U.
    Jaggi, Martin
    [J]. 22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [6] Accelerated Asynchronous Greedy Coordinate Descent Algorithm for SVMs
    Guy, Bin
    Shan, Yingying
    Geng, Xiang
    Zheng, Guansheng
    [J]. PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 2170 - 2176
  • [7] On greedy randomized coordinate descent methods for solving large linear least-squares problems
    Bai, Zhong-Zhi
    Wu, Wen-Ting
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2019, 26 (04)
  • [8] DOA Estimation Using a Greedy Block Coordinate Descent Algorithm
    Wei, Xiaohan
    Yuan, Yabo
    Ling, Qing
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (12) : 6382 - 6394
  • [9] Greedy Block Coordinate Descent under Restricted Isometry Property
    Wen, Jinming
    Tang, Jie
    Zhu, Fumin
    [J]. MOBILE NETWORKS & APPLICATIONS, 2017, 22 (03): : 371 - 376
  • [10] Perturbation Analysis of Greedy Block Coordinate Descent Under RIP
    Li, Haifeng
    Fu, Yuli
    Hu, Rui
    Rong, Rong
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (05) : 518 - 522