LINEAR CONVERGENCE OF STOCHASTIC BLOCK-COORDINATE FIXED POINT ALGORITHMS

被引:0
|
作者
Combettes, Patrick L. [1 ]
Pesquet, Jean-Christophe [2 ]
机构
[1] North Carolina State Univ, Dept Math, Box 8205, Raleigh, NC 27695 USA
[2] Univ Paris Saclay, Cent Supelec, INRIA, Ctr Visual Comp, Gif Sur Yvette, France
基金
美国国家科学基金会;
关键词
Block-coordinate algorithm; fixed-point algorithm; linear convergence; stochastic algorithm; ITERATIONS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recent random block-coordinate fixed point algorithms are particularly well suited to large-scale optimization in signal and image processing. These algorithms feature random sweeping rules to select arbitrarily the blocks of variables that are activated over the course of the iterations and they allow for stochastic errors in the evaluation of the operators. The present paper provides new linear convergence results. These convergence rates are compared to those of standard deterministic algorithms both theoretically and experimentally in an image recovery problem.
引用
收藏
页码:742 / 746
页数:5
相关论文
共 50 条
  • [1] Stochastic quasi-Fejer block-coordinate fixed point iterations with random sweeping II: mean-square and linear convergence
    Combettes, Patrick L.
    Pesquet, Jean-Christophe
    MATHEMATICAL PROGRAMMING, 2019, 174 (1-2) : 433 - 451
  • [2] Stochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping II: mean-square and linear convergence
    Patrick L. Combettes
    Jean-Christophe Pesquet
    Mathematical Programming, 2019, 174 : 433 - 451
  • [3] STOCHASTIC QUASI-FEJER BLOCK-COORDINATE FIXED POINT ITERATIONS WITH RANDOM SWEEPING
    Combettes, Patrick L.
    Pesquet, Jean-Christophe
    SIAM JOURNAL ON OPTIMIZATION, 2015, 25 (02) : 1221 - 1248
  • [4] Stochastic Block-Coordinate Gradient Projection Algorithms for Submodular Maximization
    Li, Zhigang
    Zhang, Mingchuan
    Zhu, Junlong
    Zheng, Ruijuan
    Zhang, Qikun
    Wu, Qingtao
    COMPLEXITY, 2018,
  • [5] On the convergence of a Block-Coordinate Incremental Gradient method
    Laura Palagi
    Ruggiero Seccia
    Soft Computing, 2021, 25 : 12615 - 12626
  • [6] On the convergence of a Block-Coordinate Incremental Gradient method
    Palagi, Laura
    Seccia, Ruggiero
    SOFT COMPUTING, 2021, 25 (19) : 12615 - 12626
  • [7] Random Block-Coordinate Gradient Projection Algorithms
    Singh, Chandramani
    Nedic, Angelia
    Srikant, R.
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 185 - 190
  • [8] Efficient block-coordinate descent algorithms for the Group Lasso
    Qin Z.
    Scheinberg K.
    Goldfarb D.
    Qin, Z. (zq2107@columbia.edu), 2013, Springer Verlag (05) : 143 - 169
  • [9] Block-coordinate descent and local consistencies in linear programming
    Tomáš Dlask
    Constraints, 2023, 28 : 69 - 70
  • [10] Linear convergence rates for extrapolated fixed point algorithms
    Bargetz, Christian
    Kolobov, Victor I.
    Reich, Simeon
    Zalas, Rafal
    OPTIMIZATION, 2019, 68 (01) : 163 - 195