LINEAR CONVERGENCE OF STOCHASTIC BLOCK-COORDINATE FIXED POINT ALGORITHMS

被引:0
|
作者
Combettes, Patrick L. [1 ]
Pesquet, Jean-Christophe [2 ]
机构
[1] North Carolina State Univ, Dept Math, Box 8205, Raleigh, NC 27695 USA
[2] Univ Paris Saclay, Cent Supelec, INRIA, Ctr Visual Comp, Gif Sur Yvette, France
基金
美国国家科学基金会;
关键词
Block-coordinate algorithm; fixed-point algorithm; linear convergence; stochastic algorithm; ITERATIONS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recent random block-coordinate fixed point algorithms are particularly well suited to large-scale optimization in signal and image processing. These algorithms feature random sweeping rules to select arbitrarily the blocks of variables that are activated over the course of the iterations and they allow for stochastic errors in the evaluation of the operators. The present paper provides new linear convergence results. These convergence rates are compared to those of standard deterministic algorithms both theoretically and experimentally in an image recovery problem.
引用
收藏
页码:742 / 746
页数:5
相关论文
共 50 条
  • [31] IMPROVING CONVERGENCE OF FIXED-POINT ALGORITHMS
    TODD, MJ
    OPERATIONS RESEARCH, 1975, 23 : B294 - B294
  • [32] IMPROVING CONVERGENCE OF FIXED-POINT ALGORITHMS
    TODD, MJ
    MATHEMATICAL PROGRAMMING STUDY, 1978, 7 (FEB): : 151 - 169
  • [33] Decentralized Randomized Block-Coordinate Frank-Wolfe Algorithms for Submodular Maximization Over Networks
    Zhang, Mingchuan
    Zhou, Yangfan
    Ge, Quanbo
    Zheng, Ruijuan
    Wu, Qingtao
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (08): : 5081 - 5091
  • [34] Block-Coordinate Primal-Dual Method for Nonsmooth Minimization over Linear Constraints
    Luke, D. Russell
    Malitsky, Yura
    LARGE-SCALE AND DISTRIBUTED OPTIMIZATION, 2018, 2227 : 121 - 147
  • [35] Stochastic AUC Optimization Algorithms With Linear Convergence
    Natole, Michael, Jr.
    Ying, Yiming
    Lyu, Siwei
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2019, 5
  • [36] Globally convergent block-coordinate techniques for unconstrained optimization
    Grippo, L
    Sciandrone, M
    OPTIMIZATION METHODS & SOFTWARE, 1999, 10 (04): : 587 - 637
  • [37] Globally convergent block-coordinate techniques for unconstrained optimization
    Grippo, Luigi
    Sciandrone, Marco
    Optimization Methods and Software, 1999, 10 (04): : 587 - 637
  • [38] Randomized Sparse Block Kaczmarz as Randomized Dual Block-Coordinate Descent
    Petra, Stefania
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2015, 23 (03): : 129 - 149
  • [39] A Novel Tree Block-Coordinate Method for MAP Inference
    Zach, Christopher
    PATTERN RECOGNITION, GCPR 2015, 2015, 9358 : 320 - 330
  • [40] On the complexity analysis of randomized block-coordinate descent methods
    Lu, Zhaosong
    Xiao, Lin
    MATHEMATICAL PROGRAMMING, 2015, 152 (1-2) : 615 - 642