Linear convergence rates for extrapolated fixed point algorithms

被引:7
|
作者
Bargetz, Christian [1 ]
Kolobov, Victor I. [2 ]
Reich, Simeon [3 ]
Zalas, Rafal [3 ]
机构
[1] Univ Innsbruck, Dept Math, Innsbruck, Austria
[2] Technion Israel Inst Technol, Dept Comp Sci, Haifa, Israel
[3] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
基金
以色列科学基金会;
关键词
Extrapolation; linear rate; string averaging; QUASI-NONEXPANSIVE OPERATORS; CONVEX FEASIBILITY PROBLEMS; PROJECTION METHODS; SUCCESSIVE-APPROXIMATIONS; INFINITE PRODUCTS; WEAK-CONVERGENCE; HILBERT; REGULARITY; ITERATION; MAPPINGS;
D O I
10.1080/02331934.2018.1512109
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We establish linear convergence rates for a certain class of extrapolated fixed point algorithms which are based on dynamic string-averaging methods in a real Hilbert space. This applies, in particular, to the extrapolated simultaneous and cyclic cutter methods. Our analysis covers the cases of both metric and subgradient projections.
引用
收藏
页码:163 / 195
页数:33
相关论文
共 50 条
  • [1] LINEAR CONVERGENCE OF STOCHASTIC BLOCK-COORDINATE FIXED POINT ALGORITHMS
    Combettes, Patrick L.
    Pesquet, Jean-Christophe
    2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 742 - 746
  • [2] IMPROVING CONVERGENCE OF FIXED-POINT ALGORITHMS
    TODD, MJ
    OPERATIONS RESEARCH, 1975, 23 : B294 - B294
  • [3] IMPROVING CONVERGENCE OF FIXED-POINT ALGORITHMS
    TODD, MJ
    MATHEMATICAL PROGRAMMING STUDY, 1978, 7 (FEB): : 151 - 169
  • [4] Monotonic convergence of fixed-point algorithms for ICA
    Regalia, PA
    Kofidis, E
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (04): : 943 - 949
  • [5] Conical averagedness and convergence analysis of fixed point algorithms
    Sedi Bartz
    Minh N. Dao
    Hung M. Phan
    Journal of Global Optimization, 2022, 82 : 351 - 373
  • [6] Conical averagedness and convergence analysis of fixed point algorithms
    Bartz, Sedi
    Dao, Minh N.
    Phan, Hung M.
    JOURNAL OF GLOBAL OPTIMIZATION, 2022, 82 (02) : 351 - 373
  • [7] Decentralized Proximal Gradient Algorithms With Linear Convergence Rates
    Alghunaim, Sulaiman A.
    Ryu, Ernest K.
    Yuan, Kun
    Sayed, Ali H.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (06) : 2787 - 2794
  • [8] CONVERGENCE RATES AND DECOUPLING IN LINEAR STOCHASTIC APPROXIMATION ALGORITHMS
    Kouritzin, Michael A.
    Sadeghi, Samira
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2015, 53 (03) : 1484 - 1508
  • [9] Convergence properties of fixed-point harmonic balance algorithms
    Blakey, Peter A.
    Bates, Scott P.
    2007 INTERNATIONAL SYMPOSIUM ON SIGNALS, SYSTEMS AND ELECTRONICS, VOLS 1 AND 2, 2007, : 28 - 31
  • [10] Convergence results for fixed point iterative algorithms in metric spaces
    Rus, Ioan A.
    CARPATHIAN JOURNAL OF MATHEMATICS, 2019, 35 (02) : 209 - 220