Improving Depth Estimation by Embedding Semantic Segmentation: A Hybrid CNN Model

被引:11
|
作者
Valdez-Rodriguez, Jose E. [1 ]
Calvo, Hiram [1 ]
Felipe-Riveron, Edgardo [1 ]
Moreno-Armendariz, Marco A. [1 ]
机构
[1] Inst Politecn Nacl, Ctr Invest Comp, Av Juan de Dios Batiz S-N, Ciudad De Mexico 07738, Mexico
关键词
depth estimation; hybrid convolutional neural networks; semantic segmentation; 3D CNN;
D O I
10.3390/s22041669
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Single image depth estimation works fail to separate foreground elements because they can easily be confounded with the background. To alleviate this problem, we propose the use of a semantic segmentation procedure that adds information to a depth estimator, in this case, a 3D Convolutional Neural Network (CNN)-segmentation is coded as one-hot planes representing categories of objects. We explore 2D and 3D models. Particularly, we propose a hybrid 2D-3D CNN architecture capable of obtaining semantic segmentation and depth estimation at the same time. We tested our procedure on the SYNTHIA-AL dataset and obtained sigma(3)=0.95, which is an improvement of 0.14 points (compared with the state of the art of sigma(3)=0.81) by using manual segmentation, and sigma(3)=0.89 using automatic semantic segmentation, proving that depth estimation is improved when the shape and position of objects in a scene are known.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] A Hybrid CNN Approach for Single Image Depth Estimation: A Case Study
    Harsanyi, Karoly
    Kiss, Attila
    Majdik, Andras
    Sziranyi, Tamas
    MULTIMEDIA AND NETWORK INFORMATION SYSTEMS, 2019, 833 : 372 - 381
  • [32] MONOCULAR SEGMENT-WISE DEPTH: MONOCULAR DEPTH ESTIMATION BASED ON A SEMANTIC SEGMENTATION PRIOR
    Atapour-Abarghouei, Amir
    Breckon, Toby P.
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 4295 - 4299
  • [33] Estimation of Depth in Stereo Images using Hybrid Segmentation Approaches
    Chauhan, Priyanka
    Sharma, Kanchan
    PROCEEDINGS OF IEEE INTERNATIONAL CONFERENCE ON TECHNOLOGICAL ADVANCEMENTS IN POWER AND ENERGY, 2015, : 155 - 160
  • [34] P-CNN: Percept-CNN for semantic segmentation
    Hegde, Deepak
    Balaji, G. N.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2024, 12 (01):
  • [35] Hybrid feature CNN model for point cloud classification and segmentation
    Zhang, Xinliang
    Fu, Chenlin
    Zhao, Yunji
    Xu, Xiaozhuo
    IET IMAGE PROCESSING, 2020, 14 (16) : 4086 - 4091
  • [36] Self-Supervised Monocular Depth Estimation Method for Joint Semantic Segmentation
    Song X.
    Hu H.
    Ning J.
    Liang L.
    Lu X.
    Hei X.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2024, 61 (05): : 1336 - 1347
  • [37] Automatic Segmentation of Human Depth Map Based on Semantic Segmentation of FCN and Depth Segmentation
    Yuan, Ruifeng
    Hui, Mei
    Liu, Ming
    Zhao, Yuejin
    Dong, Liquan
    Kong, Lingqin
    Chang, Ming
    Cai, Zhi
    TENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2018), 2018, 10806
  • [38] Optimal CNN-based semantic segmentation model of cutting slope images
    Mansheng Lin
    Shuai Teng
    Gongfa Chen
    Jianbing Lv
    Zhongyu Hao
    Frontiers of Structural and Civil Engineering, 2022, 16 : 414 - 433
  • [39] Optimal CNN-based semantic segmentation model of cutting slope images
    LIN Mansheng
    TENG Shuai
    CHEN Gongfa
    LV Jianbing
    HAO Zhongyu
    Frontiers of Structural and Civil Engineering, 2022, 16 (04) : 414 - 433
  • [40] Optimal CNN-based semantic segmentation model of cutting slope images
    Lin, Mansheng
    Teng, Shuai
    Chen, Gongfa
    Lv, Jianbing
    Hao, Zhongyu
    FRONTIERS OF STRUCTURAL AND CIVIL ENGINEERING, 2022, 16 (04) : 414 - 433