Improving Depth Estimation by Embedding Semantic Segmentation: A Hybrid CNN Model

被引:11
|
作者
Valdez-Rodriguez, Jose E. [1 ]
Calvo, Hiram [1 ]
Felipe-Riveron, Edgardo [1 ]
Moreno-Armendariz, Marco A. [1 ]
机构
[1] Inst Politecn Nacl, Ctr Invest Comp, Av Juan de Dios Batiz S-N, Ciudad De Mexico 07738, Mexico
关键词
depth estimation; hybrid convolutional neural networks; semantic segmentation; 3D CNN;
D O I
10.3390/s22041669
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Single image depth estimation works fail to separate foreground elements because they can easily be confounded with the background. To alleviate this problem, we propose the use of a semantic segmentation procedure that adds information to a depth estimator, in this case, a 3D Convolutional Neural Network (CNN)-segmentation is coded as one-hot planes representing categories of objects. We explore 2D and 3D models. Particularly, we propose a hybrid 2D-3D CNN architecture capable of obtaining semantic segmentation and depth estimation at the same time. We tested our procedure on the SYNTHIA-AL dataset and obtained sigma(3)=0.95, which is an improvement of 0.14 points (compared with the state of the art of sigma(3)=0.81) by using manual segmentation, and sigma(3)=0.89 using automatic semantic segmentation, proving that depth estimation is improved when the shape and position of objects in a scene are known.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] SSNet: A Novel Transformer and CNN Hybrid Network for Remote Sensing Semantic Segmentation
    Yao, Min
    Zhang, Yaozu
    Liu, Guofeng
    Pang, Dongdong
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 3023 - 3037
  • [22] A Hybrid CNN-Transformer Architecture for Semantic Segmentation of Radar Sounder data
    Ghosh, Raktim
    Bovolo, Francesca
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1320 - 1323
  • [23] Hybrid CNN and Transformer Network for Semantic Segmentation of UAV Remote Sensing Images
    Zhou X.
    Zhou L.
    Gong S.
    Zhang H.
    Zhong S.
    Xia Y.
    Huang Y.
    IEEE Journal on Miniaturization for Air and Space Systems, 2024, 5 (01): : 33 - 41
  • [24] Simultaneously Learning Semantic Segmentation and Depth Estimation from Omnidirectional Image
    Yokota A.
    Li S.
    Kamio T.
    Kosaku T.
    IEEJ Transactions on Electronics, Information and Systems, 2024, 144 (06) : 560 - 567
  • [25] Traffic scene perception algorithm with joint semantic segmentation and depth estimation
    Fan K.
    Zhong M.
    Tan J.
    Zhan Z.
    Feng Y.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2024, 58 (04): : 684 - 695
  • [26] Collaborative Deconvolutional Neural Networks for Joint Depth Estimation and Semantic Segmentation
    Liu, Jing
    Wang, Yuhang
    Li, Yong
    Fu, Jun
    Li, Jiangyun
    Lu, Hanqing
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (11) : 5655 - 5666
  • [27] ThreeWays to Improve Semantic Segmentation with Self-Supervised Depth Estimation
    Hoyer, Lukas
    Dai, Dengxin
    Chen, Yuhua
    Koring, Adrian
    Saha, Suman
    Van Gool, Luc
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 11125 - 11135
  • [28] Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation
    Wang, Qin
    Dai, Dengxin
    Hoyer, Lukas
    Van Gool, Luc
    Fink, Olga
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8495 - 8505
  • [29] Joint Task-Recursive Learning for Semantic Segmentation and Depth Estimation
    Zhang, Zhenyu
    Cui, Zhen
    Xu, Chunyan
    Jie, Zequn
    Li, Xiang
    Yang, Jian
    COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 : 238 - 255
  • [30] Hybrid Shunted Transformer embedding UNet for remote sensing image semantic segmentation
    Zhou H.
    Xiao X.
    Li H.
    Liu X.
    Liang P.
    Neural Computing and Applications, 2024, 36 (25) : 15705 - 15720