A DISTRIBUTED AND PARALLEL ANOMALY DETECTION IN HYPERSPECTRAL IMAGES BASED ON LOW-RANK AND SPARSE REPRESENTATION

被引:0
|
作者
Liu, Jun [1 ]
Zhang, Weixuan [2 ]
Wu, Zebin [1 ,3 ,4 ]
Zhang, Yi [1 ]
Xu, Yang [1 ]
Qian, Ling [5 ]
Wei, Zhihui [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
[2] Jinling High Sch, Nanjing 210094, Jiangsu, Peoples R China
[3] Nanjing Robot Res Inst Co Ltd, Nanjing 210005, Jiangsu, Peoples R China
[4] Lianyungang E Port Informat Dev Co Ltd, Lianyungang 222042, Peoples R China
[5] Nanjing Univ Sci & Technol, Sch Elect & Opt Engn, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral images; Spark; anomaly detection; distributed and parallel;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Anomaly detection in hyperspectral images aims to separate the abnormal pixels from the background, and becomes an important application of hyperspectral data processing. Anomaly detection based on Low-Rank and Sparse Representation (LRASR) can detect abnormal pixels accurately. However, with the growth of the hyperspectral data volumes, this algorithm consumes a huge amount of time and computational resources, and needs to be improved accordingly. Spark is a distributed big data processing platform, and is applicable for complex iterative calculations, because of its powerful in-memory computation and efficient task scheduling. Based on Spark, this paper proposes a distributed and parallel LRASR (called DP-LRASR), which first segments hyperspectral images using narrow dependency of resilient distributed datasets, and afterwards, a parallel clustering algorithm is employed to improve the efficiency, remarkably. Experimental results demonstrate that DP-LRASR achieves a good speedup with high scalability, in the premise of remarkable detection accuracy.
引用
下载
收藏
页码:2861 / 2864
页数:4
相关论文
共 50 条
  • [1] A Distributed Parallel Algorithm Based on Low-Rank and Sparse Representation for Anomaly Detection in Hyperspectral Images
    Zhang, Yi
    Wu, Zebin
    Sun, Jin
    Zhang, Yan
    Zhu, Yaoqin
    Liu, Jun
    Zang, Qitao
    Plaza, Antonio
    SENSORS, 2018, 18 (11)
  • [2] Anomaly Detection in Hyperspectral Images Based on Low-Rank and Sparse Representation
    Xu, Yang
    Wu, Zebin
    Li, Jun
    Plaza, Antonio
    Wei, Zhihui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (04): : 1990 - 2000
  • [3] Low-Rank and Sparse Representation for Anomaly Detection in Hyperspectral Images
    Pagare, M. S.
    Risodkar, Y. R.
    2018 INTERNATIONAL CONFERENCE ON ADVANCES IN COMMUNICATION AND COMPUTING TECHNOLOGY (ICACCT), 2018, : 594 - 597
  • [4] TENSOR LOW-RANK SPARSE REPRESENTATION LEARNING FOR HYPERSPECTRAL ANOMALY DETECTION
    Xiao, Qingjiang
    Zhao, Liaoying
    Chen, Shuhan
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7356 - 7359
  • [5] Anomaly Detection for Hyperspectral Images Based on Improved Low-Rank and Sparse Representation and Joint Gaussian Mixture Distribution
    Ran, Qiong
    Liu, Zedong
    Sun, Xiaotong
    Sun, Xu
    Zhang, Bing
    Guo, Qiandong
    Wang, Jinnian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 6339 - 6352
  • [6] Anomaly Detection in Hyperspectral imagery based on Low-Rank and Sparse Decomposition
    Cui, Xiaoguang
    Tian, Yuan
    Weng, Lubin
    Yang, Yiping
    FIFTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2013), 2014, 9069
  • [7] LOW-RANK AND COLLABORATIVE REPRESENTATION FOR HYPERSPECTRAL ANOMALY DETECTION
    Wu, Zhaoyue
    Su, Hongjun
    Du, Qian
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 1394 - 1397
  • [8] Hyperspectral Anomaly Detection Based on Low-Rank Representation and Learned Dictionary
    Niu, Yubin
    Wang, Bin
    REMOTE SENSING, 2016, 8 (04)
  • [9] Relaxed Collaborative Representation With Low-Rank and Sparse Matrix Decomposition for Hyperspectral Anomaly Detection
    Su, Hongjun
    Zhang, Huihui
    Wu, Zhaoyue
    Du, Qian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 6826 - 6842
  • [10] Robust Tensor Low-Rank Sparse Representation With Saliency Prior for Hyperspectral Anomaly Detection
    Xiao, Qingjiang
    Zhao, Liaoying
    Chen, Shuhan
    Li, Xiaorun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61 : 1 - 20