A Non-monotone Conjugate Subgradient Type Method for Minimization of Convex Functions

被引:1
|
作者
Konnov, Igor [1 ]
机构
[1] Kazan Fed Univ, Dept Syst Anal & Informat Technol, Ul Kremlevskaya 18, Kazan 420008, Russia
基金
俄罗斯基础研究基金会;
关键词
Convex minimization problems; Non-differentiable functions; Conjugate subgradient method; Simple step-size choice; Convergence properties;
D O I
10.1007/s10957-019-01589-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We suggest a conjugate subgradient type method without any line search for minimization of convex non-differentiable functions. Unlike the custom methods of this class, it does not require monotone decrease in the goal function and reduces the implementation cost of each iteration essentially. At the same time, its step-size procedure takes into account behavior of the method along the iteration points. The preliminary results of computational experiments confirm the efficiency of the proposed modification.
引用
收藏
页码:534 / 546
页数:13
相关论文
共 50 条
  • [1] A Non-monotone Conjugate Subgradient Type Method for Minimization of Convex Functions
    Igor Konnov
    [J]. Journal of Optimization Theory and Applications, 2020, 184 : 534 - 546
  • [2] A subgradient method with non-monotone line search
    O. P. Ferreira
    G. N. Grapiglia
    E. M. Santos
    J. C. O. Souza
    [J]. Computational Optimization and Applications, 2023, 84 : 397 - 420
  • [3] A subgradient method with non-monotone line search
    Ferreira, O. P.
    Grapiglia, G. N.
    Santos, E. M.
    Souza, J. C. O.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2023, 84 (02) : 397 - 420
  • [4] Quasi-monotone Subgradient Methods for Nonsmooth Convex Minimization
    Nesterov, Yu.
    Shikhman, V.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 165 (03) : 917 - 940
  • [5] Quasi-monotone Subgradient Methods for Nonsmooth Convex Minimization
    Yu. Nesterov
    V. Shikhman
    [J]. Journal of Optimization Theory and Applications, 2015, 165 : 917 - 940
  • [6] A Modified Non-Monotone BFGS Method for Non-Convex Unconstrained Optimization
    Liu, Liying
    Yao, Shengwei
    Wei, Zengxin
    [J]. ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2014, 31 (05)
  • [7] Distributed Asymptotic Minimization of Sequences of Convex Functions by a Broadcast Adaptive Subgradient Method
    Cavalcante, Renato L. G.
    Rogers, Alex
    Jennings, Nicholas R.
    Yamada, Isao
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2011, 5 (04) : 739 - 753
  • [8] AN AGGREGATE SUBGRADIENT METHOD FOR NONSMOOTH CONVEX MINIMIZATION
    KIWIEL, KC
    [J]. MATHEMATICAL PROGRAMMING, 1983, 27 (03) : 320 - 341
  • [9] Adaptive projected subgradient method for asymptotic minimization of sequence of nonnegative convex functions
    Yamada, I
    Ogura, N
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2004, 25 (7-8) : 593 - 617
  • [10] Maximizing non-monotone submodular functions
    Feige, Uriel
    Mirrokni, Vahab S.
    Vondrdak, Jan
    [J]. 48TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2007, : 461 - +