A subgradient method with non-monotone line search

被引:0
|
作者
Ferreira, O. P. [1 ]
Grapiglia, G. N. [2 ]
Santos, E. M. [3 ]
Souza, J. C. O. [4 ,5 ]
机构
[1] Univ Fed Goias, Inst Matemat & Estat, BR-74001970 Goiania, Go, Brazil
[2] Catholic Univ Louvain, ICTEAM INMA, Ave Georges Lemaitre,4-6-L4 05-01, B-1348 Louvain La Neuve, Belgium
[3] Inst Fed Educ Ciencia & Tecnol Maranhao, BR-65930000 Acailandia, MA, Brazil
[4] Aix Marseille Univ, AMSE, CNRS, Marseille, France
[5] Univ Fed Piaui, Dept Math, Teresina, PI, Brazil
关键词
Subgradient method; Non-monotone line search; Convex function; CONVERGENCE;
D O I
10.1007/s10589-022-00438-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we present a subgradient method with non-monotone line search for the minimization of convex functions with simple convex constraints. Different from the standard subgradient method with prefixed step sizes, the new method selects the step sizes in an adaptive way. Under mild conditions asymptotic convergence results and iteration-complexity bounds are obtained. Preliminary numerical results illustrate the relative efficiency of the proposed method.
引用
收藏
页码:397 / 420
页数:24
相关论文
共 50 条
  • [1] A subgradient method with non-monotone line search
    O. P. Ferreira
    G. N. Grapiglia
    E. M. Santos
    J. C. O. Souza
    [J]. Computational Optimization and Applications, 2023, 84 : 397 - 420
  • [2] A Non-monotone Conjugate Subgradient Type Method for Minimization of Convex Functions
    Konnov, Igor
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2020, 184 (02) : 534 - 546
  • [3] A Non-monotone Conjugate Subgradient Type Method for Minimization of Convex Functions
    Igor Konnov
    [J]. Journal of Optimization Theory and Applications, 2020, 184 : 534 - 546
  • [4] A Non-monotone Line Search Algorithm for Unconstrained Optimization
    Sheng-Long Hu
    Zheng-Hai Huang
    Nan Lu
    [J]. Journal of Scientific Computing, 2010, 42
  • [5] A Non-monotone Line Search Algorithm for Unconstrained Optimization
    Hu, Sheng-Long
    Huang, Zheng-Hai
    Lu, Nan
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2010, 42 (01) : 38 - 53
  • [6] The convergence of equilibrium algorithms with non-monotone line search technique
    Gao, ZY
    Lam, WHK
    Wong, SC
    Yang, H
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2004, 148 (01) : 1 - 13
  • [7] A fast non-monotone line search for stochastic gradient descent
    Fathi Hafshejani, Sajad
    Gaur, Daya
    Hossain, Shahadat
    Benkoczi, Robert
    [J]. OPTIMIZATION AND ENGINEERING, 2024, 25 (02) : 605 - +
  • [8] A New Non-monotone Line Search Algorithm for Nonlinear Programming
    Zhang, Jing
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2012, 88 (7B): : 265 - 268
  • [9] A sequential quadratic programming algorithm with non-monotone line search
    Dai, Yu-Hong
    Schittkowski, Klaus
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2008, 4 (02): : 335 - 351
  • [10] COMPRESSED FWI INVERSION WITH NON-MONOTONE LINE SEARCH LBFGS
    Duan, Chaoran
    Zhang, Fengjiao
    Han, Liguo
    Chang, Ao
    Yang, Xiaochun
    Huang, Fei
    [J]. JOURNAL OF SEISMIC EXPLORATION, 2017, 26 (06): : 561 - 586