COMPRESSED FWI INVERSION WITH NON-MONOTONE LINE SEARCH LBFGS

被引:0
|
作者
Duan, Chaoran [1 ]
Zhang, Fengjiao [1 ,2 ]
Han, Liguo [1 ]
Chang, Ao [1 ]
Yang, Xiaochun [1 ]
Huang, Fei [2 ]
机构
[1] Jilin Univ, Coll Geoexplorat Sci & Technol, Changchun 130026, Jilin, Peoples R China
[2] Uppsala Univ, Dept Earth Sci, S-75236 Uppsala, Sweden
来源
JOURNAL OF SEISMIC EXPLORATION | 2017年 / 26卷 / 06期
基金
中国国家自然科学基金;
关键词
full waveform inversion (FWI); LBFGS method; non-monotone line search; principal component analysis; PRINCIPAL COMPONENT ANALYSIS; QUASI-NEWTON METHODS; WAVE-FORM INVERSION; UNCONSTRAINED OPTIMIZATION; GLOBAL CONVERGENCE; FREQUENCY-DOMAIN; BFGS METHOD; MINIMIZATION; ALGORITHM; MODEL;
D O I
暂无
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Full waveform inversion (FWI) is a high quality seismic imaging method. It is a nonlinear inversion problem which usually needs the monotone line search method to be solved. However, the speed of convergence for such a simple search technique is relatively slow. In this paper, we combine the non-monotone line search technique with the LBFGS method and apply them to the frequency-domain FWI. We test this new method on a two-dimensional Marmousi model. The results show that the method is robust. Comparing with the monotone line search method, the new method could improve the convergence rate of FWI. We also test the new method with a two-dimensional conventional streamer data set and the results show some improvements compared with the conventional FWI method.
引用
收藏
页码:561 / 586
页数:26
相关论文
共 50 条
  • [1] A subgradient method with non-monotone line search
    O. P. Ferreira
    G. N. Grapiglia
    E. M. Santos
    J. C. O. Souza
    [J]. Computational Optimization and Applications, 2023, 84 : 397 - 420
  • [2] A subgradient method with non-monotone line search
    Ferreira, O. P.
    Grapiglia, G. N.
    Santos, E. M.
    Souza, J. C. O.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2023, 84 (02) : 397 - 420
  • [3] A Non-monotone Line Search Algorithm for Unconstrained Optimization
    Sheng-Long Hu
    Zheng-Hai Huang
    Nan Lu
    [J]. Journal of Scientific Computing, 2010, 42
  • [4] A Non-monotone Line Search Algorithm for Unconstrained Optimization
    Hu, Sheng-Long
    Huang, Zheng-Hai
    Lu, Nan
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2010, 42 (01) : 38 - 53
  • [5] The convergence of equilibrium algorithms with non-monotone line search technique
    Gao, ZY
    Lam, WHK
    Wong, SC
    Yang, H
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2004, 148 (01) : 1 - 13
  • [6] A fast non-monotone line search for stochastic gradient descent
    Fathi Hafshejani, Sajad
    Gaur, Daya
    Hossain, Shahadat
    Benkoczi, Robert
    [J]. OPTIMIZATION AND ENGINEERING, 2024, 25 (02) : 605 - +
  • [7] A New Non-monotone Line Search Algorithm for Nonlinear Programming
    Zhang, Jing
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2012, 88 (7B): : 265 - 268
  • [8] A sequential quadratic programming algorithm with non-monotone line search
    Dai, Yu-Hong
    Schittkowski, Klaus
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2008, 4 (02): : 335 - 351
  • [9] A fast non-monotone line search for stochastic gradient descent
    Sajad Fathi Hafshejani
    Daya Gaur
    Shahadat Hossain
    Robert Benkoczi
    [J]. Optimization and Engineering, 2024, 25 : 1105 - 1124
  • [10] The global convergence of the non-quasi-Newton methods with non-monotone line search
    焦宝聪
    刘洪伟
    [J]. Journal of Harbin Institute of Technology(New series), 2006, (06) : 758 - 762