A canonical space-time state space model: State and parameter estimation

被引:16
|
作者
Dewar, Michael [1 ]
Kadirkarnanathan, Visakan [1 ]
机构
[1] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
dynamic spatiotemporal modeling; expectationmaximization (EM) algorithm; maximum likelihood parameter estimation; state-space;
D O I
10.1109/TSP.2007.896245
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The maximum likelihood estimation of a dynamic spatiotemporal model is introduced, centred around the inclusion of a prior arbitrary spatiotemporal neighborhood description. The neighborhood description defines a specific parameterization of the state transition matrix, chosen on the basis of prior knowledge about the system. The model used is inspired by the spatiotemporal ARMA (STARMA) model, but the representation used is based on the standard state-space model. The inclusion of the neighborhood into an expectation-maximization based joint state and parameter estimation algorithm allows for accurate characterization of the spatiotemporal model. The process of including the neighborhood, and the effect it has on the maximum likelihood parameter estimate is described and demonstrated in this paper.
引用
收藏
页码:4862 / 4870
页数:9
相关论文
共 50 条
  • [1] A space-time state-space model of phytoplankton allelopathy
    Mukhopadhyay, A
    Tapaswi, PK
    Chattopadhyay, J
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2003, 4 (03) : 437 - 456
  • [2] PARAMETER-ESTIMATION FOR A MODEL OF SPACE-TIME RAINFALL
    SMITH, JA
    KARR, AF
    [J]. WATER RESOURCES RESEARCH, 1985, 21 (08) : 1251 - 1257
  • [3] Parameter Estimation of Space-Time Model Using Genetic Algorithm
    Halim, S.
    Bisono, I. N.
    Sunyoto, D.
    Gendo, I.
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT, VOLS 1-4, 2009, : 1371 - 1375
  • [4] Joint channel and space-time parameter estimation
    Cedervall, M
    Paulraj, A
    [J]. THIRTIETH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1 AND 2, 1997, : 375 - 379
  • [5] Least square algorithm based on bias compensated principle for parameter estimation of canonical state space model
    Liu, Longlong
    Long, Zhen
    Azar, Ahmad Taher
    Zhu, Quanmin
    Ibraheem, Ibraheem Kasim
    Humaidi, Amjad J.
    [J]. MEASUREMENT & CONTROL, 2022, 55 (5-6): : 330 - 339
  • [6] Noise Moment and Parameter Estimation of State-Space Model
    Kost, Oliver
    Dunik, Jindrich
    Straka, Ondrej
    [J]. IFAC PAPERSONLINE, 2018, 51 (15): : 891 - 896
  • [7] Parameter and State Estimation Algorithm for a State Space Model with a One-unit State Delay
    Gu, Ya
    Lu, Xianling
    Ding, Ruifeng
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2013, 32 (05) : 2267 - 2280
  • [8] Parameter and State Estimation Algorithm for a State Space Model with a One-unit State Delay
    Ya Gu
    Xianling Lu
    Ruifeng Ding
    [J]. Circuits, Systems, and Signal Processing, 2013, 32 : 2267 - 2280
  • [9] Filtering based parameter estimation for observer canonical state space systems with colored noise
    Wang, Xuehai
    Ding, Feng
    Alsaedi, Ahmed
    Hayat, Tasawar
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (01): : 593 - 609
  • [10] Combined State and Parameter Estimation and Identifiability of State Space Realizations
    Yu, Ming Jui
    Bernstein, Dennis S.
    [J]. 2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 3054 - 3059