Least square algorithm based on bias compensated principle for parameter estimation of canonical state space model

被引:3
|
作者
Liu, Longlong [1 ]
Long, Zhen [1 ]
Azar, Ahmad Taher [2 ,3 ]
Zhu, Quanmin [4 ]
Ibraheem, Ibraheem Kasim [5 ]
Humaidi, Amjad J. [6 ]
机构
[1] Ocean Univ China, Sch Math Sci, Qingdao, Peoples R China
[2] Prince Sultan Univ, Coll Comp & Informat Sci, Riyadh, Saudi Arabia
[3] Benha Univ, Fac Comp & Artificial Intelligence, Banha, Egypt
[4] Univ West England, Dept Engn Design & Math, Bristol, Avon, England
[5] Dijlah Univ Coll, Dept Comp Tech Engn, Baghdad, Iraq
[6] Univ Technol Baghdad, Control & Syst Engn Dept, Al Sina St, Baghdad 19006, Iraq
来源
MEASUREMENT & CONTROL | 2022年 / 55卷 / 5-6期
关键词
least square algorithm; bias compensated principle; parameter estimation; canonical state space model; IDENTIFICATION;
D O I
10.1177/00202940211064179
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Due to the existence of system noise and unknown state variables, it is difficult to realize unbiased estimation with minimum variance for the parameter estimation of canonical state space model. This paper presents a new least squares estimator based on bias compensation principle to solve this problem, transforms canonical state space into the form suitable for the least square algorithm, introduces an augmented parameter vector and an auxiliary variable, derives parameter estimation formula based on noise compensation, realizes the unbiased estimation, and gives the specific algorithm. A simulation example is provided to verify the effectiveness of the estimator.
引用
收藏
页码:330 / 339
页数:10
相关论文
共 50 条
  • [1] Least squares based iterative parameter estimation algorithm for state space model with time-delay
    Gu Ya
    Chou Yongxin
    Ding Wei
    Liu Jicheng
    [J]. 2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 1603 - 1607
  • [2] A canonical space-time state space model: State and parameter estimation
    Dewar, Michael
    Kadirkarnanathan, Visakan
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2007, 55 (10) : 4862 - 4870
  • [3] The Bias Compensation Based Parameter and State Estimation for Observability Canonical State-Space Models with Colored Noise
    Wang, Xuehai
    Ding, Feng
    Liu, Qingsheng
    Jiang, Chuntao
    [J]. ALGORITHMS, 2018, 11 (11):
  • [4] Kalman state filtering based least squares iterative parameter estimation for observer canonical state space systems using decomposition
    Ding, Feng
    Liu, Ximei
    Ma, Xingyun
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 301 : 135 - 143
  • [5] Recursive and iterative least squares parameter estimation algorithms for observability canonical state space systems
    Ma, Xingyun
    Ding, Feng
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2015, 352 (01): : 248 - 258
  • [6] Recursive Least-Square-Based Parameter Estimation for Dynamic State Estimation in Power Grids
    Riahinia, Shahin
    Ameli, Amir
    Ghafouri, Mohsen
    Yassine, Abdulsalam
    [J]. 2023 IEEE 2ND INDUSTRIAL ELECTRONICS SOCIETY ANNUAL ON-LINE CONFERENCE, ONCON, 2023,
  • [7] BIAS-REMEDY LEAST MEAN-SQUARE EQUATION ERROR ALGORITHM FOR IIR PARAMETER RECURSIVE ESTIMATION
    LIN, JN
    UNBEHAUEN, R
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1992, 40 (01) : 62 - 69
  • [8] State Space Least Mean Square for State Estimation of Synchronous Motor
    Ahmed, Arif
    Moinuddin, Muhammad
    Al-Saggaf, Ubaid M.
    [J]. 2014 INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (ICECE), 2014, : 461 - 464
  • [9] State and Parameter Estimation Algorithm for State Space Model Based on Linear Neural Network and Kalman Filter
    Yang, Yuhang
    Shi, Ying
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (ICMA), 2019, : 2320 - 2324
  • [10] Recursive parameter and state estimation methods for observability canonical state-space models exploiting the hierarchical identification principle
    Cui, Ting
    Ding, Feng
    Alsaedi, Ahmed
    Hayat, Tasawar
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2019, 13 (16): : 2538 - 2545