We present an algorithm that prepares thermal Gibbs states of one dimensional quantum systems on a quantum computer without any memory overhead, and in a time significantly shorter than other known alternatives. Specifically, the time complexity is dominated by the quantity N-parallel to h parallel to/T, where N is the size of the system, parallel to h parallel to is a bound on the operator norm of the local terms of the Hamiltonian (coupling energy), and T is the temperature. Given other results on the complexity of thermalization, this overall scaling is likely optimal. For higher dimensions, our algorithm lowers the known scaling of the time complexity with the dimension of the system by one.
机构:
ICFO-Institut de Ciencies FotoniquesICFO-Institut de Ciencies Fotoniques
Hendrych M.
Gallego R.
论文数: 0引用数: 0
h-index: 0
机构:
ICFO-Institut de Ciencies FotoniquesICFO-Institut de Ciencies Fotoniques
Gallego R.
Mičuda M.
论文数: 0引用数: 0
h-index: 0
机构:
ICFO-Institut de Ciencies Fotoniques
Department of Optics, Palacký University, 17. listopadu 12ICFO-Institut de Ciencies Fotoniques
Mičuda M.
Brunner N.
论文数: 0引用数: 0
h-index: 0
机构:
H.H.Wills Physics Laboratory, University of BristolICFO-Institut de Ciencies Fotoniques
Brunner N.
Acín A.
论文数: 0引用数: 0
h-index: 0
机构:
ICFO-Institut de Ciencies Fotoniques
ICREA-Institució Catalana de Recerca i Estudis AvançatsICFO-Institut de Ciencies Fotoniques
Acín A.
Torres J.P.
论文数: 0引用数: 0
h-index: 0
机构:
ICFO-Institut de Ciencies Fotoniques
Department of Signal Theory and Communications, Universitat Politècnica de CatalunyaICFO-Institut de Ciencies Fotoniques