Preparing Thermal States of Quantum Systems by Dimension Reduction

被引:50
|
作者
Bilgin, Ersen [1 ]
Boixo, Sergio [1 ]
机构
[1] CALTECH, Inst Quantum Informat, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
COMPLEXITY;
D O I
10.1103/PhysRevLett.105.170405
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an algorithm that prepares thermal Gibbs states of one dimensional quantum systems on a quantum computer without any memory overhead, and in a time significantly shorter than other known alternatives. Specifically, the time complexity is dominated by the quantity N-parallel to h parallel to/T, where N is the size of the system, parallel to h parallel to is a bound on the operator norm of the local terms of the Hamiltonian (coupling energy), and T is the temperature. Given other results on the complexity of thermalization, this overall scaling is likely optimal. For higher dimensions, our algorithm lowers the known scaling of the time complexity with the dimension of the system by one.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] New method for the quantum ground states in one dimension
    Chung, S. G.
    PHYSICS LETTERS A, 2007, 361 (4-5) : 396 - 400
  • [42] Quiver Representations and Dimension Reduction in Dynamical Systems
    Nijholt, Eddie
    Rink, Bob W.
    Schwenker, Soeren
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2020, 19 (04): : 2428 - 2468
  • [43] QUANTUM INTEGRABLE SYSTEMS IN ONE-DIMENSION
    FOWLER, M
    PHYSICA D, 1995, 86 (1-2): : 189 - 197
  • [44] Experimental estimation of the dimension of classical and quantum systems
    Hendrych, Martin
    Gallego, Rodrigo
    Micuda, Michal
    Brunner, Nicolas
    Acin, Antonio
    Torres, Juan P.
    NATURE PHYSICS, 2012, 8 (08) : 588 - 591
  • [45] Experimental estimation of the dimension of classical and quantum systems
    Hendrych M.
    Gallego R.
    Mičuda M.
    Brunner N.
    Acín A.
    Torres J.P.
    Nature Physics, 2012, 8 (8) : 588 - 591
  • [46] Estimating the reduction time of quantum states
    Parisio, Fernando
    PHYSICAL REVIEW A, 2011, 84 (06):
  • [47] On the reduction criterion for random quantum states
    Jivulescu, Maria Anastasia
    Lupa, Nicolae
    Nechita, Ion
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (11)
  • [48] Transferring Multi-Dimensional Quantum States and Preparing Quantum Networks in Cavity QED
    陈子翃
    郑小兰
    廖长庚
    CommunicationsinTheoreticalPhysics, 2010, 54 (09) : 452 - 456
  • [49] Preparing superposition of squeezed coherent states under thermal reservoir
    Sales, J. S.
    da Silva, L. F.
    de Almeida, N. G.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2010, 43 (24)
  • [50] Transferring Multi-Dimensional Quantum States and Preparing Quantum Networks in Cavity QED
    Chen Zi-Hong
    Zheng Xiao-Lan
    Liao Chang-Geng
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2010, 54 (03) : 452 - 456